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Implicit TVDLF Methods for Diffusion and Kinematic Flows

A. M. Wasantha Lal, M.ASCE": and Gabor Toth?

Abstract: Diffusion-wave and kinematic-wave approximations of the St. Venant equations are commonly used in physically based, regional
hydrologic models because they have high computational efficiency and use fewer equations. Increasingly, models based on these equations
are being applied to cover larger areas of land with different surface and groundwater regimes and complicated topography. Existing numeri-
cal methods are not well suited for multiyear simulation of detailed flow behavior unless they can be run efficiently with large time steps and
control numerical error. A numerical method also should be able to solve both diffusive and kinematic wave models. A total variation
diminishing Lax-Friedrichs type method (TVDLF) that is stable and accurate with both diffusive- and kinematic-wave models and
large time steps is presented as a means to address this problem. It uses a linearized conservative implicit formulation that makes it possible
to avoid nonlinear iterations. The numerical method was tested successfully using steady flow profiles, analytical solutions for wave propa-
gation, and observed data from a field experiment in a mountain stream of Sri Lanka. A grid convergence test and an error analysis are carried
out to determine how the model errors of the numerical schemes behave with the discretization. DOI: 10.1061/(ASCE)HY.1943-7900

.0000749. © 2013 American Society of Civil Engineers.

CE Database subject headings: Numerical models; Kinematics; Field tests; Sri Lanka.

Author keywords: Implicit total variation diminishing Lax-Friedrichs (TVDLF); Kinematic flow; Diffusion wave.

Introduction

Numerical models based on the diffusive-wave approximation of
the St. Venant equations provide a stable, accurate and efficient
way to solve most canal and river flow problems when the inertia
terms are negligible. Such models are useful when simulating
regional flow over large physical spaces, such as south Florida,
with many thousands of miles of canals, and 30-year to 40-year
simulation periods. Diffusion-wave models are efficient for these
applications because only one equation has to be solved per river
segment for head instead of two as in the case of full St. Venant
equations. The run times of these models can be kept low by using
implicit solution methods and efficient linear equation solvers.
Commonly used diffusive-wave formulations include the fully
implicit formulation by Akan and Yen (1981); the explicit formu-
lation by Hromadka et al. (1987) and the noniterative implicit
formulation by Lal (1998). Integrated physically based models such
as MIKE-SHE use variants of these methods in two dimensions
(Graham and Butts 2005).

Formulation of the diffusive-wave model commonly involves
central-differencing. This formulation can be fast and accurate
when flow is diffusive, but fail under a number of conditions found
in large hydrologic systems with both one-dimensional and two-
dimensional flow. This formulation can be inaccurate when the
inertia terms are too large, as described by Ponce et al. (1978).
The fully implicit formulation of the diffusive-wave model
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(Akan and Yen 1981) is generally stable with large time steps. Such
a formulation can, however, fail to converge when attempting to
couple a one-dimension (1D) model with a large two-dimension
(2D) flow model, when the bottom topography is too uneven, or
when there is wetting and drying. A noniterative implicit formu-
lation, on the other hand, does not have this problem because
it does not need iterations. However, this method is subject to
larger numerical errors, visible oscillations, and dry-outs when the
bottom slope is relatively steep and the flow is kinematic. Many of
these problems are due to the inability of central-difference—based
diffusive-wave models to simulate kinematic flow, which is gov-
erned by hyperbolic partial-differential equations. Adopting a
purely kinematic-wave model is also not possible because of the
need to simulate diffusive conditions in other parts of the domain.
More details on various kinematic- and diffusive-flow methods can
be found in Ponce (1991) and Singh (1996).

The total variation diminishing Lax-Friedrichs (TVDLF) formu-
lation with first-order or second-order spatial accuracy can be used
to solve both diffusive- and kinematic-wave models. The use of this
method is critical when solving 1D canal flow problems coupled
with 2D surface and groundwater flow systems without iterations.
This method has been explained in detail by Yee (1989), and used
by Toth and Odstrcil (1996) and Toth et al. (1998). It falls under a
class of linearized conservative implicit solution methods that is
popular in computational fluid dynamics (CFD) and magneto
hydrodynamics (MHD). The method is used extensively to solve
nonlinear hyperbolic-parabolic problems. Extra features used in
the implementation include the capability to calculate the Jacobian
numerically or analytically, and the capability to achieve second-
order spatial accuracy by modifying the flux function.

In the case of south Florida, the TVDLF method is useful in
improving the existing noniterative method used to simulate the
south Florida system (Lal et al. 2005), and making sure that both
flat and steep slopes can be simulated simultaneously in one model.
The existing method is adequate for both 1D and 2D wetland con-
ditions close to the southern part of Florida and the Everglades, but
gets into numerical difficulties when simulating certain areas in the
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northern parts of the state. Flow in the Everglades can be diffusive,
while flow in the north can be kinematic. The method currently
used can use 6-h to 24-h time steps when simulating relatively flat
areas and 1- to 60-minute time steps when simulating steep areas.
When the TVDLF method is used, the time step restriction for kin-
ematic flow becomes relaxed, and the need for iterative coupling
between 1D and 2D coupling goes away. Some of the challenges
faced during a similar 1D and 2D coupling exercise between the
HEC-RAS and MODFLOW models can be found in the paper
by Rodriguez et al. (2008).

The TVDLF formulation introduced in this paper was tested
extensively to ensure accurate solutions throughout a wide range
of flow and bottom slope conditions, and a wide range of spatial
and temporal discretizations (Lal 2008). The first-order accurate
TVDLF solution is compared to a fourth-order accurate Runge-
Kutta solution under various steady-state conditions and spatial dis-
retizations. A grid convergence test is carried out to make sure that
as the discretization gets finer, the numerical solution approaches
the true solution. The method is then tested under various kinematic
and diffusive conditions to make sure that the wave speeds and
wave attenuations compare well with analytical solutions and with
the solutions obtained using existing methods such as those used by
Akan and Yen (1981), and Lal (1998). In addition, a field experi-
ment was conducted on the Dambulu River of Sri Lanka to test the
TVDLF method in a natural river. During the experiment, sinusoi-
dal discharge waves were generated at the upstream end of the river
using an existing gated structure, and the water levels observed at
various downstream locations were compared to the results of the
TVDLF method and the analytical equations. The objective of this
experiment was to make sure that both the governing equations and
the numerical formulation could simulate the flow in naturally-
occurring steep rivers.

In order to determine the amplitude and phase errors of the
TVDLEF solution, a numerical experiment is carried out using a
simplified version of the field experiment, assuming a uniformly
sloping canal. This simplification allows the creation of an analyti-
cal solution that is useful in calculating the numerical error.
The numerical experiment is useful in understanding how both
amplitude and phase errors vary with the discretization in both
diffusive-wave and kinematic-wave models. The paper shows that
the implicit TVDLF method can be used to solve a range of flow
problems using many levels of spatial and temporal discretizations.

Governing Equations

River flow or canal flow can be described using the St. Venant
equations, which consist of a continuity equation and a momentum
equation. The equations can be written for a wide river using the
water depth A and the discharge per unit width ¢ as primitive
variables:

oh  dq .
L
o " ox )
dqg 0 (¢ Ooh _
—8*;4‘5;(7 + gh Sf‘i*"a—x—é‘o =0 (2)
where g = gravitational acceleration; sy = —0z/0x = river

bed slope; z = river bottom elevation; ¢ = uh = while i > 0;
u = average flow velocity; s ¢ = friction slope in Manning’s equation
written as

1
q= ;/11+7'|Sf|asgn(sf) (3)
b

where sgn(s;) = &1 depending on s; >0 or s, <0; v=2/3;
a = 1/2; n, = Manning’s constant. Values of v and « vary for
wetlands and other applications. Values for these parameters for
wetlands can be found in Kadlec and Wallace (2009).

The diffusive wave or no inertia approximation of the St. Venant
equation is established by neglecting the inertia terms of the
momentum equation. These are the first two terms of Eq. (2).
In the diffusive wave model, Eq. (2) collapses to s, = sH: where
sy = —OH /Ox = water surface slope; H = h + z = water level. In
the case of kinematic flow, friction slope is equal to the bottom
slope or s, = so. The numerical method developed below is for
the no inertia approximation of the St. Venant equations.

Before developing a numerical method, Egs. (1)-(3) are
combined to produce the following linearized advection-diffusive
equation assuming that g = g(h, sg):

o Oh_ o

—— = 4
o o N aw @
where
dq 1 , q
1 _ Bl A7 T = (1 = 5
c== (1+7)nb [sul®sgn(su) = 1+, (5)
dq 1 q
_ 71 _ __h1+7 a—1 _ 1 6
K . |sal o (6)

Here, c¢ is the kinematic celerity and K is the hydraulic diffu-
sivity. When the depth is small and the slope is steep, the term with
¢ dominates and the equation becomes predominantly hyperbolic.
When the depth is large and the slope is small, the term with K
dominates and the equation becomes predominantly parabolic.
The singularity of K at s = 0 is avoided in the numerical method,
as shown later. In the case of the hyperbolic equations, an oscilla-
tion-free method is needed to obtain a solution, while in the case of
the parabolic equations, a central-difference—based implicit method
is generally sufficient.

The conditions for applying kinematic and diffusive wave mod-
els were derived by Ponce et al. (1978). These conditions are useful
whenever approximate formulations of the St. Venant equation are
used. The kinematic model is applicable when Psgu,/h, > 171
where P = propagation period; sy = channel bed slope; u, =
uniform flow velocity; k, = uniform flow depth. The diffusive
wave model is applicable when Psy+/{g/h,) > 30 where g =
gravitational acceleration. '

Numerical Solution

The numerical formulation of the diffusive wave model involves
solving the scalar conservative Eq. (1) using a first-order implicit
finite volume formulation. For a river segment, the finite volume
formulation can be written as

h;‘H—l — hi 1 mn m n
At = A—x(qif(l/z) - qi+(1/2)) = Ri(h ) (7)

where the superscripts 7 and n + 1 correspond to time levels n and
n + 1, respectively; ¢}, | /, is the numerical flux function at segment
joint i + 1/2 at time level m defined later; R;(h™) is used to re-
present the right hand side of Eq. (7); h is the vector of water depths
[y, Ry, ..., hy]T; N = number of canal segments in the model.
Fig. 1 shows a definition sketch.
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Fig. 1. Definition sketch of a discretized river in 1D

Flux Function for Central-Difference-Based Methods

Some of the popular numerical models based on the diffusive wave
assumption can be explained using Eq. (7) and various approximate
forms of ¢7} /5

hi+zi = higy — 2\
m m ! ! i+l AR
q1+(1/2 KH‘(]/Z)( Ax,:p_ )

1
where K}l ) = [Th'*'s% '] I (8)
b +(1/2)

with sy = max(|s,+(|/2)| 6p) when a < 15 sip172) = (H; = Hiyy)/
Ax;; 6y &~ 107 is suitable for applications in south Florida.
Variables n; and n, represent time levels that determine if the
method is explicit or implicit, as described below. Three of the
formulations using this flux function are described as follows:

1. Explicit method: Formulation (7) becomes explicit when n; =
n, = n (Hromadka et al. 1987). The EXTRAN module of the
storm water management model (Rosner et al. 1984) also uses
this method. With explicit methods, 2/*' in Eq. (7) can be
obtained using Eq. (8). The fully explicit formulation requires
small time steps which slow down model runs.

2. The fully implicit method (Akan and Yen 1981): The for-
mulation becomes implicit when n; =n, =n+1. The
MIKE-SHE model (Graham and Butts 2005) and a number

of commonly used overland flow models use a 2D version -

of this method. With this method, Eq. (7) becomes a nonlinear
system of equations that has to be solved simultaneously.
A strict time step restriction is not needed for implicit methods.
But Newton’s method with iterations is required to solve this
problem. The convergence of this method is slow especially
when slope sy is very small (<10~ when using double pre-
cision arithmetic) or when the topography is uneven. Some
large scale regional model applications require thousands of
iterations before convergence. Nonconvergence is also possi-
ble Wwith this method.

3. The noniterative implicit method: The nonlinear formulation
with ny =n and n, =n+ 1 can be solved noniteratively
and with approximate Jacobians when the flow is changing
slowly. This method, explained by Lal (1998), is faster be-
cause of the use of the implicit formulation with no iterations.

This is an important advantage when solving large coupled
hydrologic systems. But the solution is oscillatory when the
slopes are steep unless small time steps are used. This method
becomes unstable with large systems even before implicit
methods are used.

TVDLF Methods

The TVDLE method described by Yee (1987) and Toth et al. (1998)
can overcome many of the problems in central-difference-based
methods described in the previous section. It uses a conservative
linearized implicit method and therefore does not need Newton’s
iterations. In order to ensure that the solution to Eq. (7) remains
oscillation free and positive in 2 when the equation becomes pre-
dominantly hyperbolic, the authors use a total variation diminishing
(TVD) flux function. The TVD property was introduced by Harten
(1983) to control or prevent the generation of spurious oscillations
in numerical solutions to hyperbolic problems. The flux function
qi+(1/2) in Eq. (7) giving the TVD property is defined as

| I o
qiv(1/2) = E”J(n/z)lsim/zﬂ sen(sieiy2)
1
§|Ci+(1/2)|(hi+l —h) ®)

where (/2 = max[0,0.5(h; + A;,)]. The second term repre-
sents numerical flux required for maintaining the TVD property.
The value of celerity c;,(j/2) is calculated as

T . ,
Cirqyy = (1 + 7)Eh?gr(l/z)lsi—}—(l/Z)|03gn(si+(l/2)) (10)

The flux is considered to be positive when moving water from i
to i + 1. The flux function can be computed at n or n+ 1 time
levels to give explicit and implicit methods. Eq. (9) gives only
the first-order flux.

A second-order accurate solution in space can be obtained using
modified heads with the same function. These modified heads are
defined as

ht = h; + 050k (11)

0.5AR}

i+l

By = hig — (12)

where the limited slope Ah} is defined as

Ahy = [0.5sgn(Ah;)
+ 0.5sgn{Ah;, )| min(B|AR;|, B|AR |, 0.5|AR;
+ Ay ) (13)

and Ah = h; — h;_;; (B is a tuned parameter used in the slope limit-
ing function subject to 1 < 3 < 2 (van Leer 1979). The parameter 3
is a problem dependent parameter that gives some control over the
error. For the current problem, larger 3 values provide better accu-
racy and smaller § values provide better stability.

Implicit Solution Scheme for TVDLF Method

Various implicit methods described earlier with fluxes in Eq. (7)
defined at time step m = n -+ | can be solved using Newton’s
method. It can be shown that the solution involves determining
the vector Ah in
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[1 _alg_l(l)m} - Ah = R(h")A¢ (14)

where h = [i;, hy, ... hy]T = vector of water depths; R is defined
in (7); I = identity matrix. The vector of water depths is updated at
every time step using h"*' = h” + Ah. No iterations are used with
the TVDLF method. The Jacobian R (h)/0h at the time level # is
calculated numerically or analytically. In either case, (14) for a 1D
problem can be written as a tri-diagonal system of equations for
i=1, N

A,’Ah,‘,l + BiA/’li -+ CiA]'L,'+1 = R,At (15)

The Thomas algorithm is useful in solving the linear equations
resulting from this approach. The matrix elements A;, B;, and C; in
the three nonzero diagonals of the Jacobian can be calculated
analytically or numerically. For i = 2, N — I, the nonzero matrix
elements can be calculated using

A — At dqi_1p Bo—1_ At (0gi1p ginipp
T Ax on, ' Ax\ Oh; Oh;
(16)
A1 gy Gi-1/2 — q9i+1/2
Ci=+— , Ry ===/ 17
! +Ax 3h,-+1 Ax ( )

At the boundaries,

g Oq3p2 At 0q3,
=1 — , - 2

(ah. Oh, C=taron, U8

B 1 At (Ogy- 2 3qom _ AtOqnap

Nn=1- N=
Ax 3/1N 8I’lN Ax ahN
(19)
9in — 93/2 4N-172 — 9out

R =102 Ry = N=1/2 7 Gout 2

! Ax v Ax (20)

At the upstream boundary, g;,(h,) represents inflow, and at the
downstream boundary, g, (fy) represents outflow, both formu-
lated for the appropriate boundary condition types.

Calculation of Jacobian Using Analytical Method

The terms of the Jacobian 0¢;/,/Oh; and 0q;/,/Oh;, required
to calculate the terms of Egs. (16)-(20) can be obtained using
Eq. (9) where qiy1/2 = qivija(Rivijas Siy1j2)- Applying the chain
rule for the TVDLF method, it can be shown that

at]i+(1/2) 1 1
“on, 2 Gty BKHU/Z) 3 lcistiy2)]
Ihl+1 ] ’Yl |
T Cit(1/2
2 hive12) i+(1/2)
1
= ay (LK 2s8n(siv0/2) 21

861i+|/2:lc_ —LK- el
By, 252 T A Kz mgle
Vhiyy — h
2?1/2{ ’Y|C:+1/2|
1
b KenGs)| (22

The value of ¢;, is calculated using (10). The value of K/,
is calculated as

Lo [sipi2l®
K = ok —_— 23
w2 = ok e T ) @)

where &; = 1.0 x 107 for most problems within south Florida
where the slopes in the wetlands can be as low as 2 x 107 to
5% 1075, The term |s;11/2(/(|si+1/2] + 65) prevents division by
zero when the slope is small. An alternative form is |s;,/,|*/
(max(]s;yi/2l, 65). If the selected value of 6, is too small there
can be nonconvergence.

Calculation of Jacobian Using Numerical Derivatives

The Jacobian in Eq. (14) can also be calculated numerically using

8Ri _Ri(hh ...,/1j+€, ,hN)—R,(h)

Oh; - €

(24)

where R;(h) represents the right hand side of Eq. (7). The value of ¢
used is the typical magnitude of 4 multiplied by the square root of
machine precision of the computer. For the applications described
in this paper, € = 1078 is used.

Note that the Jacobian is very sparse and only the cells that
contribute to the right hand side need to be perturbed. In 1D there
are only three nonzero elements for each row i as explained earlier.
The Jacobian for river networks can also be created using object
oriented programming methods (Lal et al. 2005).

Numerical Experiments

Numerical experiments are carried out to test the TVDLF method
and compare the results with the results obtained from commonly
used diffusive wave models, analytical models, and data from a
field experiment. When the TVDLF method is compared to other
methods, only the numerical algorithms are compared. Most popu-
lar overland flow models use 2D versions of the nonlinear implicit
method by Akan and Yen (1981). Since all numerical methods that
satisfy the consistency condition give very similar solutions with
fine discretizations, it is sometimes useful to compare numerical
errors instead of numerical solutions.

The numerical experiments explained below consist of six
steady-state experiments and five dynamic wave experiments each
covering the nonlinear implicit method (Akan and Yen 1981), the
noniterative implicit method (Lal 1998), and the TVDLF method.
A grid convergence test is carried out to make sure that the solution
converges to the true solution as the segment size and the time step
get finer. Numerical error is also estimated for a problem that is
similar to the field test problem in order to understand how the
numerical error changes with the discretization.
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Steady-State Experiment

The steady-state experiment is carried out with an ideal river with a
uniform bed slope of s, and an upstream water depth of &g at x = 0.
The steady-state solution for this problem obtained using the
implicit TVDLF method is compared to the steady-state solution
obtained using a more accurate fourth-order Runge-Kutta (RK4)
method using a finer mesh.

The steady-state form of the governing Eq. (2) without inertia
terms can be written using dimensionless variables as

oh 1\ (+)/a
7= =

where h = h/h,; X = sox/h,; h, = normal depth. The solution of
Eq. (25) gives a water surface profile similar to the M1 profile
{Henderson 1966). Two steady-state profiles with sy = 2.0 and
hy =5.0 where hy=hg/h, are used in the comparison.
The TVDLF method is applied using various spatial discretizations
measured using N, where N = number of grid cells in the domain.
A dimensionless discretization parameter is defined as ¢ = Axs,/
h, = Lsy/(Nh,) where L = length of the domain. The physical
parameters used with the TVDLF test are sy = 0.01, n;, = 0.03,
h, = 1.0, and L = 500.0 m. The RK4 solution of the dimension-
less problem is obtained with N = 1,000 and Ax = 0.005. Fig. 2
shows how the TVDLEF solutions at steady state compare with the
RK4 solution.

Grid Convergence Test
A grid convergence test is carried out for the TVDLF method with
the same steady-state setup explained in the previous section with

ﬁo = hy/h, = 2.0, assuming the RK4 solution of (25) to be
accurate. The solutions at arbitrary locations x = 0.5, 1.5, and
3.0 calculated as 1.57532, 1.0689, and 1.00054 are used to
calculate the numerical errors of the implicit TVDLF method.
Table 1 shows the numerical errors corresponding to different di-
mensionless discretizations Ax calculated as Ax = L/N, e.g., for
N =10, 20, 50. These values correspond to ¢ = 0.5, 0.25, 0.1.
These results can be used to show that the TVDLF solution con-
verges to the RK4 solution with a first-order accuracy as Ax or ¢

becomes small. Fig. 2 shows some of the numerical solutions of /.

A
hyshy/h =2, RK4
——— h,=5, RK4
A
............................ N=200, TVDLF, h=2
————— e N=100, TVDLF <
— — — ~ N=20, TVDLF , 4
0 N=5, TVDLF, h,=5
A
o N=5, TVDLF, h=2

A

Dimensionless Depth, h (when h=2)
P

A

-y
»

iy
E-Y

-
N

|
w
Dimensionless Depth, h (when h, = 5.0)

O I 1

2 L4
Dimensionless Distance, x

Fig. 2. Comparison of steady-state water levels obtained using the RK4
method and the TVDLF method

Table 1. Numerical Errors from Grid Convergence Test

N, Number

grid points ¢ x=05 =15 ¥=30
10 0.50 0.02986 0.06859 0.00757
20 0.25 0.01458 0.03550 0.00255
50 0.10 . 0.00571 0.01455 0.00073
100 0.05 0.00282 0.00731 0.00032
200 0.025 0.00139 0.00364 0.00015
500 0.010 0.00053 0.00141 0.00006

Wave Propagation Experiment

The purpose of this experiment is to compare the wave speeds and
the logarithmic decrements of water waves simulated using three
numerical methods and the analytical solutions. The experiment
allows testing under both kinematic and diffusive wave conditions.
The three methods tested are the fully implicit method (Akan and
Yen 1981) explained using Eq. (8) under option (b), the noniterative
implicit methods (I.al 1998) explained using Eq. (8) under option
(c), and the TVDLF method explained using the flux function (9).
Two-dimensional versions of first two methods are used in popular
overland flow models.

Derivation of Analytical Solution

An analytical solution is obtained for a small amplitude sinusoidal
water depth disturbance of amplitude 4, along the canal over time.
This solution is imposed on the equilibrium depth (uniform flow
depth) of 4,,. A solution of the form h, = h’el"~%* is sought for (4)
by substituting h, for & where k = k; + k,I and f = f| + f,1 in
complex form; I = v/—1; f, = the decay constant for time decay,
assumed as 0; f, = frequency of the discharge wave introduced at
upstream = 27/P; P = wave period; k; = spatial decay constant;
k, = wave number = 27/L; L = wave length. The real part of h, is
used as the solution. The test is limited to continuous sinusoidal
waves with no time decay introduced at the upstream. Substituting
in Eq. (4),

f—ck = Kk? (26)
Dimensionless variables are now defined as

. kh PO
k=—2, fo— @7
So UnSo

where h,, is obtained using Eq. (3) or , = [Qon,/(Bs§)]"/(+7) for
wide rectangular canal sections; Qg = canal discharge; B = width of
the canal. Eq. (26) then becomes
k> +(1+y)k—Ff=0 (28)
The analytical solution of k is

R:—u+w+va+wt4ﬂ (29)

20

The solution of A, can now be written as
h, = h'e™** cos(fyt — kpx) (30)

where h’ = amplitude at x = 0. The wave speed is calculated as

e=S=L2 (31)
ka
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Table 2. Information Used in Creating Model Runs Shown in Table 3

7 Period, P (s) Ax (m) At (s) C, 8.

0.1 40668 100.1 50.0 0.257 0.299
0.5 8133 20.31 38.8 0.528 3.030
1.0 4066 10.56 19.4 0.946 10.439
5.0 813 3.077 3.88 0.649 24.590
10 407 2.033 1.94 0.491 28.180

Note: For numerical models, s; = 0.001, &, = 0.2 m, n, = 0.035.

and the logarithmic decrement that is used to measure the
subsidence of a wave is calculated as

6 =2mst (32)

The dimensionless variables f and k are very useful in creating
many benchmark tests representing a wide range of bed slopes and
friction values. These tests are useful when comparing the three
numerical methods. The variable f determines if the flow is kin-
ematic or diffusive, as described later.

Comparison of Numerical and Analytical Solutions

The three numerical methods described earlier are tested by com-
paring the numerical solutions against analytical solutions. The
analytical solutions are obtained using Eq. (29) with f = 0.1,
0.5, 1.0, 5.0, and 10. The numerical solutions are obtained using
physical parameters h, =02 m, sy =0.001, n, =0.035, and
u,, = 0.309 m/s. The value of P for a given f is calculated using

= 2mh, /(fu,sq). Even if actual parameter values are reported
here for completeness, results are presented only using dimension-

- less variables.

The time step Ar and the segment size Ax for the numerical
models are selected to keep numerical errors under control.
This is accomplished by keeping the values of dimensionless
discretizations ¢ and 1 below 0.04. They are defined as (Hirsch
2007; Lal 2000)

¢ = szX and ’l,[) = szt (33)

The values of Ax and At are calculated as Ar = P/ (27) and
Ax = ¢h,/ (kzso) The value of ¢ from the model output is calcu-
lated using L/(Pu,). The value of the logarithmic decrement is
calculated using 6 = In(k,,/h,,,) where h, and k., are succes-
sive wave peaks in the simulated solution at a given time. Table 2
shows the physical parameters and the Ax and Ar values used with
the three numerical methods.

The values of At shown in the table are the time steps below
which all the methods are stable and nonoscillatory. The fully
implicit method and the TVDLF method do not need time
step control for stability. However, the noniterative implicit
method is stable only if C, <1 where C, = cAt/Ax is the

Courant-Friedrichs-Lewy (CFL) number; ¢ is defined in Eq. (5).
Stability does not depend on (3, for all methods where G, =
KAt/Ax? = a dimensioness mesh ratio; K is defined in Eq. (4).
Table 3 shows the analytical values of ¢ and § obtained using
Eqgs. (29), (31), and (32), and the numerical values obtained using
the three methods.

Fig. 3 shows snap shots of two of the actual water surface profile
waves corresponding to f 0.1 and 10 in starting the begmnmg of
acycle at x = 0. For the plots shown, 4, = 0.2 mand &’ = 0.02 m
are used. The amplitude envelopes are shown in dotted lines. The
purpose of Fig. 3 is to show different waves in actual dimensions in
a single plot. The wave for f = 10 is diffusive and decays rapidly
while the wave for f = 0.1 is kniematic and decays slowly. Only a
portion of the f = 0.1 is visible because the wave is long. The plots
for all three numerical methods and the analytical solution almost
coincide for the discretizations chosen in Table 3. Fig. 3 and Table 3
show that as f becomes very small and the flow becomes
kinematic, all numerical solutions start to deviate from the exact
solution.

Results of this experiment show that while iterations are not
required for the TVDLF method, many iterations are needed for
the fully implicit method. In the case of the current benchmark,
the number of iterations needed is about 2-3 per time step.
Considering that the basic difference between the noniterative
method and the TVDLF method is the addition of the flux correc-
tion term in the TVD method, it is clear that the flux correction term
is the reason for stability of the TVDLF method with steep slopes.

The analytical solution (29) used here is useful beyond testing
numerical methods. It can also be used to identify if a given no
inertia problem is kinematic or diffusive in nature. If the value
of f is much smaller than 1, the root & of Eq. (29) is mostly imagi-
nary, and the flow is kinematic with negligible wave decay with
time and distance. If f is much larger than 1, the flow is diffusive
with a significant wave decay behavior. The condition of appli-
cability of the kinematic model given as Psyu,/h, > 171 (Ponce
et al. 1978) can also be expressed using the dimensionless param-
eter f as f < 0.037 for the purposes of comparison. The condition
of applicability of the diffusive wave model when the inertia terms
are negligible, Psg+/g/h, > 30, can be expressed similarly as
F f < 21 where F = Froude number. Even if the numerical limits
0.037 and 21 listed here do not directly apply for the current prob-
lem, which has continuous sinusoidal discharge pulses sent from
upstream instead of time decaying pulses, this exercise demon-
strates the use of f in identifying kinematic and diffusive flow
types. Table 3 shows how the experiments can be designed to cover
both kinematic and diffusive problems.

Field Experiment at Dambulu River in Sri Lanka

A field experiment was carried out in the Dambulu River of Sri
Lanka to verify the applicability of the implicit TVDLF method
to steep river flow problems. The Dambulu River starts at
7°52/15.85''N and 80°37'51.75"'E, near the famous Cricket Sta-
dium at Dambulla, and ends at the historic Kala-Wewa Reservoir

Table 3. Comparison of Results of Three Numerical Methods with Analytical Solutions

/& Analytical (m) & (Akan) & (Noniterative implicity & (TVDLF) 4 Analytical & (Akan) & (Noniterative implicity & (TVDLF)
0.1 1.6674 1.664 1.667 1.674 0.113 0.139 0.090 0.232
0.5 1.6926 1.709 " 1.689 1.719 0.553 0.643 0.507 0.728
1.0 1.7607 1.764 1.742 1.781 1.041 1.109 0.965 1.182
5.0 2.5648 2.497 2476 2.564 2.895 3.093 3.053 3.194
10 3.3889 3.437 3.285 3.306 3.667 3.867 3.438 3.332

Note: Analytical using Eqs. (31) and (32); Akan = Akan and Yen (1981); noniterative implicit Lal (1998).

JOURNAL OF HYDRAULIC ENGINEERING © ASCE / SEPTEMBER 2013/ 979



0.22 e S ——
1 24
|?:0.1 upper envelope\——

0.215

T T 17T
—

0.21
{=10 envelope

m

o

i

(=)

(&)}
UL L
>

[Waves traveling downstream |

Ve

Analytical water surface
A

profiles for £=0.1

'

\

o
S

o
'_;
©
o |-|.g_|1|1<-—+—r-v—r|||1

\\

] — &\
Analytical, Akan, Non-iter, TVDLF [~

A o
water surface profiles for f=10

0.195

Water level,

0.185 All numerical solutions ||
A A
=0.1 lower envelope for f=0.1 I
0.18 i i n e S e 1-1-
500 1000 1500 2000
Distance, m

Fig. 3. Results of the wave propagation test for f =0.1 and }" =10
shown in Table 3

built during 500 AD. The 17.5-km test reach begins at the Dambulu
reservoir, which has the outflow structures necessary to create a
design hydrograph of any given shape. The first 4.0 km of the river
has a slope of 0.0075, and the next 13.5 km has a slope of 0.00153.

A discharge hydrograph of sinusoidal shape and a period of 6 h
was created at the upstream end of the reservoir by manipulating
the control gates. The discharge rates were estimated based on
precise rotations of the gear wheels and rating curves. The dis-
charge was kept at O = 17.0 m?/s for t < 7.0 h, and Q = 17.0 +
8.49 sin[2w (s — 7.0)/6.0Jm® /s for t > 7.0 h, where r = 00:00 h on
January 12, 2008, Colombo time. The peak discharge rate was
2548 m*/s (900 cfs), e.g., at times 8:30 a.m., 2:30 p.m., and
the trough discharge rate was 8.49 m?/s (300 cfs), e.g., at times
11:30 a.m., 5:30 p.m.. The sinusoidal shape made it possible to
estimate analytical solutions and numerical errors to this problem
assuming the bed slope to be constant. However, true bed topog-
raphy is used for all other model simulations.

Fig. 4 shows a location map of the river, the Dambulu Reservoir,
and the gage G1 at the upstream end. Gage G2 at the Kiralawa
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Fig. 4. Map of the test site in Dambulla, Sri Lanka

bridge and G3 at the Udanigama village are at distances 7.5 km
and 10.9 km, respectively, along the river. Fig. 5 shows a picture
of the rapids section of the river. The alluvial section of the river
starts at 15 km, and the river ends at around 17.5 km.

An implicit TVDLF method is used to simulate the flow in
the river resulting from the sinusoidal discharge variation at the
upstream end. The fiver is discretized into 175 segments that
are approximately 100 m long. The time step used is 1 min.
The river is 10 m to 100 m wide, and has an average width of
37.0 m. The Manning’s roughness is calibrated using a least square
method. The values obtained for the 0-7.5 km, 7.5-10.9 km, and
10.9-17.5 km river stretches are 0.083, 0.045, and 0.065, respec-
tively. Fig. 6 shows that the water levels calculated using the
TVDLF method compare well with the water levels observed in
the field even when some of the data collection methods were
crude. Data collection was hampered by the limited amount of
access available for setting up the initial conditions, poor terrain,
and wild elephants.

The field data can be used to calculate the speed of the wave as
Cobs = 0.83 m/s by noting that it took about 2.5 h for the wave
peak to travel 7.5 km up to G2. To obtain an analytical estimate
of the same, the uniform depth £, is calculated as h, =
[Qony/(B1/50)]%¢ = 0.98 m using canal discharge Qy = 17 m?/
s, width B =37 m, 55 = 1.53 x 1073, ny = 0.083. The uniform
flow velocity u, = Qg/(h,B) =0.47 m/s. The value of f =
Sf2h,/(u,50) = 0.40, indicating that the flow is kinematic accord-
ing to Eq. (29). For kinematic flow, u, can be used to calculate
an analytical estimate for wave speed using Eq. (5) as ¢,y =
u,(1+ ) =0.78 m/s which can be compared to the observed
speed of 0.83 m/s. These results show that some of the bdsic
behaviors of the river can be predicted using simple calculations.

Numerical Error
When numerical methods are unconditionally stable as in the case
of the fully implicit method by Akan and Yen (1981), the TVDLF
method, or the noniterative method, there is a tendency for some
users to use large time steps ignoring the numerical error associated
with it. Fortunately, this problem is not significant in the case of
explicit methods where the CFL condition places some limits on
the time step and therefore the numerical error.

In the absence of clear guidelines for error control, it is impor-
tant to understand how the amplitude and phase errors in a solution
vary with the discretization. The example of the Dambulu River is

Fig. 5. Upstream section of Dambulu River, Sri Lanka (image by
Wasantha Lal)
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Fig. 6. Observed water levels at gages Gl, G2, and G3 along Dambulu River compared with water levels simulated using the TVDLF

method
used to understand this problem. For this purpose, the etror in the 80
amplitude and the phase are calculated using o Zg =
— — 3% =0.274 —=
6“ — a” a(l , E(p — SD(I (pn (34) i 40 E H A
a, P g . =
£ L}

where a,, p, = the amplitude and the phase of the numerical S 20 =
solution; a,, yp, = amplitude and the phase of the analytical iz
solution; P = wave period. The analytical solution is obtained using & A
Eq. (29). b oo A :

When calculating the numerical error in the TVDLE solution for 10 c 10
Dambulu River water levels, the only way to obtain an analytical '
solution is to assume that the river bed has a flat bottom approxi- B
mating the true bottom. For this river, sy = 0.00153 and n;, = -
0.083 are assumed, making it possible to obtain u, = 0.47, T n A
h, =098, F = Froude number = 0.15, and the wave length as =102 = u 0=0.274
16.8 km. Fig. 7 shows how the amplitude and the phase errors £
of the water levels at gage G3 simulated using the TVDLF method ' A A
and defined using Eq. (34) vary with C, and ¢ where ¢ is defined §
using Eq. (33). C, and ¢ represent dimensionless forms of Ar and & 10° a ==
Ayx that are also shown in Table 4. The results show that both .
amplitude and phase errors are generally negative and the error TS c — 0

magnitudes increase with Ax and At According to this experi- r
ment, model results are not affected much whether the Jacobian
is calculated analytically using Eqgs. (21) and (22) or numerically
using Eq. (24).

Fig. 7. Amplitude and phase errors of water levels obtained for
Dambulu River at 10.9 km using the TVDLF method
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Table 4. Approximate Numerical Errors of TVDLF Solution for Dambulu

River at 10.9 km from Upstream

Ax, m At,s P C, B € €4
100.0 0.029 0.22 0.24 25.5% 0.0134
350 200.0 0.058 0.44 0.49 29.4% 0.0137
350 450.0 0.131 1.00 1.10 38.1% 0.0180
350 900.0 0.261 2.00 2.20 50.8% 0.0295
350 1800.0 0.523 4.00 4.41 67.7% 0.0625
100 50.0 0.014 0.39 1.50 11.2% 0.0007
100 100.0 0.029 0.78 3.00 13.8% 0.0021
100 200.0 0.058 1.55 6.00 18.7% 0.0058
100 1200.0 0.349 9.33 36.03 52.5% 0.0211
100 2400.0 0.698 18.66 72.07 73.6% 0.0730

Note: For this error analysis, so = 0.00153, u, = 047 m, h, = 0.98 m,
F,=0.15, Ax =350 m (¢ = 0.274), and Ax = 100 m (¢ = 0.078) are
assumed.

Table 5. Approximate Numerical Errors of Problem in Table 4
Ax, m At s P C, Jé) €, €

100 50.0 0.014 0.39 1.50 24.6% 0.0080
100 200.0 0.058 1.56 6.06 16.7% 0.0109
100 600.0 0.174 4.66 18.01 ~10.2% 0.0121
100 2400.0 0.698 18.66 72.07 —72.8% 0.0259

Note: When using second-order accurate flux function with TVDLF
method. For this error analysis, sq = 0.00153, u,, = 0.47 m, A, = 0.98 m,
F, =0.15, and Ax = 100 m (¢ = 0.078) are assumed.

Table 6. Approximate Numerical Errors When Using First-Order TVDLFE
Method When Bed Slope is Arbitrarily Steep

Ax, m At s P C, 8 €, €

100 150.0 0.044 4.63 0.045 1.0% 0.00026
100 300.0 0.087 9.28 0.090 3.1% 0.00014
100 600.0 0.174 18.57 0.090 7.8% 0.00021
100 1200.0 0.349 37.14 0.360 15.9% 0.00280

Note: For this error analysis, sq = 0.153, h, = 0.25 m, u, = 1.86 m/s;
F =12, and Ax = 100 m (¢ = 0.00015) are assumed.

Table 5 shows the numerical error in the same problem when
a second-order accurate flux function is used instsead of a first-
order accurate flux function as in all other cases. The second-order
accurate flux function used here is described using Eqgs. (11)—(13).
Table 5 shows that the numerical error of the second-order method
is smaller, but only with small discretizations.

Table 6 shows the numerical error in a similar problem, but with
a bed slope that is 100 times larger. The objective here is to find out
if the method is still stable, and how the error varies with the time
step. The physical parameters used here are s = 0.153, u,, = 1.86,
h, = 0.25, F = 1.19, and wave length is 66.9 km. This experiment
creates kinematic flow conditions due to the steep slope. The results
show that the implicit TVDLF method is stable even with large
CFL numbers C,. The results also show that the numerical errors
are small for this problem because the wave length is large, and
therefore ¢ is small. Results of this and other experiments show
that the implicit TVDLF method is stable when the bottom slope
is steep.

Conclusions

The development and the application of an implicit TVDLF method
to solve the diffusive wave approximation of the St. Venant

equations is presented in this paper. Tests are carried out to show
that the solutions obtained using the method for both steady-state
and unsteady-state problems compare well with same solutions
obtained with the existing fully implicit method (Akan and Yen
1981), the noniterative implicit method (Lal 1998), and the analyti-
cal solutions.

A backwater problem that has a solution similar to the M1
profile is used for the steady-state test. The solution obtained using
the fourth-order Runge-Kutta method (RK4) is used as the bench-
mark solution. Results show that the TVDLF and RK4 solutions
agree well with each other for two steady-state problems. This test
is also extended as a grid convergence test. Results of this test show
that the TVDLF solution converges to the true solution as the
discretization is refined.

A wave propagation problem that has an analytical solution is
used next as an unsteady-state test. Wave speeds and wave decays
of various numerical methods are investigated in this test. Results
show that all the methods give solutions that compare well with the
analytical solutions. These results also show that the TVDLF
method and the fully implicit method (Akan and Yen 1981) are
stable with very large time steps, while the noniterative method
(Lal 1998) is not. The TVDLF method, however, does not require
iterations, while the fully implicit method requires many iterations
depending on the problem. The TVDLF method gives good results
for a wide range of kinematic, diffusive, and mixed-flow condi-
tions, and a wide range of wave frequencies except when the inertia
terms are significant.

A field experiment carried out in a steep, 17.5-km long section
of the Dabulu River of Sri Lanka was used to demonstrate that the
TVDLF method can simulate the movement of artificially gener-
ated water waves with a period of 6 h. Results show that the
numerical solutions agree well with the field observations.

The same field problem is used as the basis for carrying out
numerical experiments that can be helpful in understanding the
behavior of the numerical error when the spatial and temporal dis-
cretizations are varied. The results of this test can be useful in the
future when selecting mesh sizes and time steps to keep the numeri-
cal error under control.
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