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Theoretical Basis for One-Dimensional Flow 
Calculations 
 
 

This chapter describes the methodologies used in performing the one-
dimensional flow calculations within HEC-RAS.  The basic equations are 
presented along with discussions of the various terms.  Solution schemes for 
the various equations are described.  Discussions are provided as to how the 
equations should be applied, as well as applicable limitations.   
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General 
 
 

This chapter describes the theoretical basis for one-dimensional water surface 
profile calculations.  Discussions contained in this chapter are limited to  
steady flow water surface profile calculations and unsteady flow routing.  
When sediment transport calculations are added to the HEC-RAS system, 
discussions concerning this topic will be included in this manual. 

 
 

Steady Flow Water Surface Profiles 
 

HEC-RAS is currently capable of performing one-dimensional water surface 
profile calculations for steady gradually varied flow in natural or constructed 
channels.  Subcritical, supercritical, and mixed flow regime water surface 
profiles can be calculated.  Topics discussed in this section include: equations 
for basic profile calculations; cross section subdivision for conveyance 
calculations; composite Manning's n for the main channel; velocity weighting 
coefficient alpha; friction loss evaluation; contraction and expansion losses; 
computational procedure; critical depth determination; applications of the 
momentum equation; and limitations of the steady flow model. 

 
Equations for Basic Profile Calculations   

 
Water surface profiles are computed from one cross section to the next by 
solving the Energy equation with an iterative procedure called the standard 
step method.  The Energy equation is written as follows: 
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Where: Y1, Y2  = depth of water at cross sections 

 
Z1, Z2  = elevation of the main channel inverts 

 
 V1, V2   = average velocities (total discharge/ total flow area) 

 
 α1, α2  = velocity weighting coefficients 

 
 g  =  gravitational acceleration 

 
 he  =  energy head loss 
 
 

A diagram showing the terms of the energy equation is shown in Figure 2-1. 
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Figure 2.1  Representation of Terms in the Energy Equation 

 
 

 
The energy head loss (he) between two cross sections is comprised of friction 
losses and contraction or expansion losses.  The equation for the energy head 
loss is as follows: 
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Where: L = discharge weighted reach length 

 
fS  =  representative friction slope between two sections 

 
C = expansion or contraction loss coefficient 
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The distance weighted reach length, L, is calculated as: 
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where:   = cross section reach lengths specified for flow in 

the left overbank, main channel, and right 
overbank, respectively 

robchlob LLL ,,

 

robchlob QQQ ,,  = arithmetic average of the flows between sections 
for the left overbank, main channel, and right 
overbank, respectively 

 
 

Cross Section Subdivision for Conveyance 
Calculations 

 
The determination of total conveyance and the velocity coefficient for a cross 
section requires that flow be subdivided into units for which the velocity is 
uniformly distributed.  The approach used in HEC-RAS is to subdivide flow 
in the overbank areas using the input cross section n-value break points 
(locations where n-values change) as the basis for subdivision (Figure 2-2).  
Conveyance is calculated within each subdivision from the following form of 
Manning’s equation (based on English units): 
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where: K =  conveyance for subdivision 

 
n =  Manning's roughness coefficient for subdivision 

 
A = flow area for subdivision 

 
R = hydraulic radius for subdivision (area / wetted perimeter) 

 
The program sums up all the incremental conveyances in the overbanks to 
obtain a conveyance for the left overbank and the right overbank.  The main 
channel conveyance is normally computed as a single conveyance element.  
The total conveyance for the cross section is obtained by summing the three 
subdivision conveyances (left, channel, and right). 
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   Figure 2.2  HEC-RAS Default Conveyance Subdivision Method 
 

 
An alternative method available in HEC-RAS is to calculate conveyance 
between every coordinate point in the overbanks (Figure 2.3).  The 
conveyance is then summed to get the total left overbank and right overbank 
values.  This method is used in the Corps HEC-2 program.  The method has 
been retained as an option within HEC-RAS in order to reproduce studies that 
were originally developed with HEC-2. 
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 Figure 2.3 Alternative Conveyance Subdivision Method (HEC-2 style)
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The two methods for computing conveyance will produce different answers 
whenever portions on the overbank have ground sections with significant 
vertical slopes.  In general, the HEC-RAS default approach will provide a 
lower total conveyance for the same water surface elevation. 

 
In order to test the significance of the two ways of computing conveyance, 
comparisons were performed using 97 data sets from the HEC profile 
accuracy study (HEC, 1986).  Water surface profiles were computed for the 
1% chance event using the two methods for computing conveyance in HEC-
RAS.  The results of the study showed that the HEC-RAS default approach 
will generally produce a higher computed water surface elevation.  Out of the 
2048 cross section locations, 47.5% had computed water surface elevations 
within 0.10 ft. (30.48 mm), 71% within 0.20 ft. (60.96 mm), 94.4% within 0.4 
ft. (121.92 mm), 99.4% within 1.0 ft. (304.8 mm), and one cross section had a 
difference of 2.75 ft. (0.84 m).  Because the differences tend to be in the same 
direction, some effects can be attributed to propagation of downstream 
differences. 

 
The results from the conveyance comparisons do not show which method is 
more accurate, they only show differences.  In general, it is felt that the HEC-
RAS default method is more commensurate with the Manning equation and 
the concept of separate flow elements.  Further research, with observed water 
surface profiles, will be needed to make any conclusions about the accuracy 
of the two methods. 

 
 

Composite Manning's n for the Main Channel 
 

Flow in the main channel is not subdivided, except when the roughness 
coefficient is changed within the channel area.  HEC-RAS tests the 
applicability of subdivision of roughness within the main channel portion of a 
cross section, and if it is not applicable, the program will compute a single 
composite n value for the entire main channel.  The program determines if the 
main channel portion of the cross section can be subdivided or if a composite 
main channel n value will be utilized based on the following criterion:  if a 
main channel side slope is steeper than 5H:1V and the main channel has more 
than one n-value, a composite roughness nc will be computed [Equation 6-17, 
Chow, 1959].  The channel side slope used by HEC-RAS is defined as the 
horizontal distance between adjacent n-value stations within the main channel 
over the difference in elevation of these two stations (see SL and SR of Figure 
2.4). 

 
2-6 



 Chapter 2  Theoretical Basis for One-Dimensional Flow Calculations  
 

40.00 248.75 457.50 666.25 875.00

Distance

705

710

715

720

725

730

735

ROCKY RIVER  TEST 2
Cross-section 3.000

.100 .050 .050 .100

S SL R

   Figure 2.4  Definition of Bank Slope for Composite nc Calculation 
 
 

For the determination of nc, the main channel is divided into N parts, each 
with a known wetted perimeter Pi and roughness coefficient ni. 
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where: nc = composite or equivalent coefficient of roughness 

 
P = wetted perimeter of entire main channel 

 
Pi = wetted perimeter of subdivision I 

 
ni = coefficient of roughness for subdivision I 
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The computed composite nc should be checked for reasonableness.  The 
computed value is the composite main channel n value in the output and 
summary tables.   
 
Evaluation of the Mean Kinetic Energy Head 

 
Because the HEC-RAS software is a one-dimensional water surface profiles 
program, only a single water surface and therefore a single mean energy are 
computed at each cross section.  For a given water surface elevation, the mean 
energy is obtained by computing a flow weighted energy from the three 
subsections of a cross section (left overbank, main channel, and right 
overbank).  Figure 2.5 below shows how the mean energy would be obtained 
for a cross section with a main channel and a right overbank (no left overbank 
area).   
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   Figure 2.5 Example of How Mean Energy is Obtained 
 
 

To compute the mean kinetic energy it is necessary to obtain the velocity 
head weighting coefficient alpha.  Alpha is calculated as follows: 

 
Mean Kinetic Energy Head = Discharge-Weighted Velocity Head 
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In General: 
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The velocity coefficient, α, is computed based on the conveyance in the three 
flow elements:  left overbank, right overbank, and channel.  It can also be 
written in terms of conveyance and area as in the following equation: 
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Where: At   = total flow area of cross section 

 
Alob, Ach, Arob = flow areas of left overbank, main channel and       

right overbank, respectively 
 

Kt  = total conveyance of cross section 
 

Klob, Kch, Krob = conveyances of left overbank, main channel          
and right overbank, respectively 

 
 

Friction Loss Evaluation 
 

Friction loss is evaluated in HEC-RAS as the product of fS and L (Equation 

2-2), where fS  is the representative friction slope for a reach and L is 
defined by Equation 2-3.  The friction slope (slope of the energy gradeline) at 
each cross section is computed from Manning’s equation as follows: 
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Alternative expressions for the representative reach friction slope (S_f) in 
HEC-RAS are as follows: 

 
 

Average Conveyance Equation 
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Average Friction Slope Equation 
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Geometric Mean Friction Slope Equation 
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Harmonic Mean Friction Slope Equation 
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Equation 2-13 is the “default” equation used by the program; that is, it is used 
automatically unless a different equation is requested by input.  The program 
also contains an option to select equations, depending on flow regime and 
profile type (e.g., S1, M1, etc.).  Further discussion of the alternative methods 
for evaluating friction loss is contained in Chapter 4, “Overview of Optional 
Capabilities.” 
 
 
Contraction and Expansion Loss Evaluation 

 
Contraction and expansion losses in HEC-RAS are evaluated by the following 
equation: 

 
2-10 



 Chapter 2  Theoretical Basis for One-Dimensional Flow Calculations  
 

 

g
V

g
V

Chce 22

2
22

2
11 αα

−=       (2-17) 

 
 
Where: C  = the contraction or expansion coefficient 

 
The program assumes that a contraction is occurring whenever the velocity 
head downstream is greater than the velocity head upstream.  Likewise, when 
the velocity head upstream is greater than the velocity head downstream, the 
program assumes that a flow expansion is occurring.  Typical “C” values can 
be found in Chapter 3, “Basic Data Requirements.” 
 

 
Computation Procedure 

 
The unknown water surface elevation at a cross section is determined by an 
iterative solution of Equations 2-1 and 2-2.  The computational procedure is 
as follows: 

 
1. Assume a water surface elevation at the upstream cross section (or 

downstream cross section if a supercritical profile is being calculated). 
 

2. Based on the assumed water surface elevation, determine the 
corresponding total conveyance and velocity head. 

 
3. With values from step 2, compute fS  and solve Equation 2-2 for he. 

 
4. With values from steps 2 and 3, solve Equation 2-1 for WS2. 

 
5. Compare the computed value of WS2 with the value assumed in step 

1; repeat steps 1 through 5 until the values agree to within .01 feet 
(.003 m), or the user-defined tolerance. 

 
The criterion used to assume water surface elevations in the iterative 
procedure varies from trial to trial.  The first trial water surface is based on 
projecting the previous cross section's water depth onto the current cross 
section.  The second trial water surface elevation is set to the assumed water 
surface elevation plus 70% of the error from the first trial (computed W.S. - 
assumed W.S.).  In other words, W.S. new = W.S. assumed + 0.70 * (W.S. 
computed - W.S. assumed).  The third and subsequent trials are generally 
based on a "Secant" method of projecting the rate of change of the difference 
between computed and assumed elevations for the previous two trials.  The 
equation for the secant method is as follows: 

 
WSI = WSI-2  -  ErrI-2 * Err_Assum / Err_Diff (2-18) 
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Where: WSI  = the new assumed water surface 
 

WSI-1  = the previous iteration’s assumed water surface 
 

WSI-2  = the assumed water surface from two trials 
previous 

 
ErrI-2  = the error from two trials previous (computed water 

surface minus assumed from the I-2 iteration) 
 

Err_Assum = the difference in assumed water surfaces from the 
previous two trials.  Err_Assum = WSI-2 - WSI-1  

 
Err_Diff = the assumed water surface minus the calculated 

water surface from the previous iteration (I-1), 
plus the error from two trials previous (ErrI-2).  
Err_Diff = WSI-1 - WS_CalcI-1 + ErrI-2  

 
The change from one trial to the next is constrained to a maximum of 50 
percent of the assumed depth from the previous trial.  On occasion the secant 
method can fail if the value of Err_Diff becomes too small.  If the Err_Diff is 
less than 1.0E-2, then the secant method is not used.  When this occurs, the 
program computes a new guess by taking the average of the assumed and 
computed water surfaces from the previous iteration. 

 
The program is constrained by a maximum number of iterations (the default is 
20) for balancing the water surface.  While the program is iterating, it keeps 
track of the water surface that produces the minimum amount of error 
between the assumed and computed values.  This water surface is called the 
minimum error water surface.  If the maximum number of iterations is 
reached before a balanced water surface is achieved, the program will then 
calculate critical depth (if this has not already been done).  The program then 
checks to see if the error associated with the minimum error water surface is 
within a predefined tolerance (the default is 0.3 ft or 0.1 m).  If the minimum 
error water surface has an associated error less than the predefined tolerance, 
and this water surface is on the correct side of critical depth, then the program 
will use this water surface as the final answer and set a warning message that 
it has done so.  If the minimum error water surface has an associated error 
that is greater than the predefined tolerance, or it is on the wrong side of 
critical depth, the program will use critical depth as the final answer for the 
cross section and set a warning message that it has done so.  The rationale for 
using the minimum error water surface is that it is probably a better answer 
than critical depth, as long as the above criteria are met.  Both the minimum 
error water surface and critical depth are only used in this situation to allow 
the program to continue the solution of the water surface profile.  Neither of 
these two answers are considered to be valid solutions, and therefore warning 
messages are issued when either is used.  In general, when the program 
cannot balance the energy equation at a cross section, it is usually caused by 
an inadequate number of cross sections (cross sections spaced too far apart) or 
bad cross section data.  Occasionally, this can occur because the program is 
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attempting to calculate a subcritical water surface when the flow regime is 
actually supercritical.  

 
When a “balanced” water surface elevation has been obtained for a cross 
section, checks are made to ascertain that the elevation is on the “right” side 
of the critical water surface elevation (e.g., above the critical elevation if a 
subcritical profile has been requested by the user).  If the balanced elevation 
is on the “wrong” side of the critical water surface elevation, critical depth is 
assumed for the cross section and a “warning” message to that effect is 
displayed by the program.  The program user should be aware of critical 
depth assumptions and determine the reasons for their occurrence, because in 
many cases they result from reach lengths being too long or from 
misrepresentation of the effective flow areas of cross sections. 

 
For a subcritical profile, a preliminary check for proper flow regime involves 
checking the Froude number.  The program calculates the Froude number of 
the “balanced” water surface for both the main channel only and the entire 
cross section.  If either of these two Froude numbers are greater than 0.94, 
then the program will check the flow regime by calculating a more accurate 
estimate of critical depth using the minimum specific energy method (this 
method is described in the next section).  A Froude number of 0.94 is used 
instead of 1.0, because the calculation of Froude number in irregular channels 
is not accurate.  Therefore, using a value of 0.94 is conservative, in that the 
program will calculate critical depth more often than it may need to.  

 
For a supercritical profile, critical depth is automatically calculated for every 
cross section, which enables a direct comparison between balanced and 
critical elevations. 
 

 
Critical Depth Determination 

 
Critical depth for a cross section will be determined if any of the following 
conditions are satisfied: 

 
(1) The supercritical flow regime has been specified. 

 
(2) The calculation of critical depth has been requested by the user. 
 
(3) This is an external boundary cross section and critical depth must be 

determined to ensure the user entered boundary condition is in the 
correct flow regime. 

 
(4) The Froude number check for a subcritical profile indicates that 

critical depth needs to be determined to verify the flow regime 
associated with the balanced elevation. 

 
(5) The program could not balance the energy equation within the 
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specified tolerance before reaching the maximum number of 
iterations. 

 
The total energy head for a cross section is defined by: 
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where: H = total energy head 

 
WS = water surface elevation 
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The critical water surface elevation is the elevation for which the total energy 
head is a minimum (i.e., minimum specific energy for that cross section for 
the given flow).  The critical elevation is determined with an iterative 
procedure whereby values of WS are assumed and corresponding values of H 
are determined with Equation 2-19 until a minimum value for H is reached. 
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  Figure 2.6  Energy vs. Water Surface Elevation Diagram 
 

The HEC-RAS program has two methods for calculating critical depth: a 
“parabolic” method and a “secant” method.  The parabolic method is 
computationally faster, but it is only able to locate a single minimum energy.  
For most cross sections there will only be one minimum on the total energy 
curve, therefore the parabolic method has been set as the default method (the 
default method can be changed from the user interface).  If the parabolic 
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method is tried and it does not converge, then the program will automatically 
try the secant method. 

 
In certain situations it is possible to have more than one minimum on the total 
energy curve.  Multiple minimums are often associated with cross sections 
that have breaks in the total energy curve.  These breaks can occur due to 
very wide and flat overbanks, as well as cross sections with levees and 
ineffective flow areas.  When the parabolic method is used on a cross section 
that has multiple minimums on the total energy curve, the method will 
converge on the first minimum that it locates.  This approach can lead to 
incorrect estimates of critical depth.  If the user thinks that the program has 
incorrectly located critical depth, then the secant method should be selected 
and the model should be re-simulated. 

 
The "parabolic" method involves determining values of H for three values of 
WS that are spaced at equal ∆WS intervals.  The WS corresponding to the 
minimum value for H, defined by a parabola passing through the three points 
on the H versus WS plane, is used as the basis for the next assumption of a 
value for WS.  It is presumed that critical depth has been obtained when there 
is less than a 0.01 ft. (0.003 m) change in water depth from one iteration to 
the next and provided the energy head has not either decreased or increased 
by more than .01 feet (0.003 m).   

 
The “secant” method first creates a table of water surface versus energy by 
slicing the cross section into 30 intervals.  If the maximum height of the cross 
section (highest point to lowest point) is less than 1.5 times the maximum 
height of the main channel (from the highest main channel bank station to the 
invert), then the program slices the entire cross section into 30 equal intervals. 
 If this is not the case, the program uses 25 equal intervals from the invert to 
the highest main channel bank station, and then 5 equal intervals from the 
main channel to the top of the cross section.  The program then searches this 
table for the location of local minimums.  When a point in the table is 
encountered such that the energy for the water surface immediately above and 
immediately below are greater than the energy for the given water surface, 
then the general location of a local minimum has been found.  The program 
will then search for the local minimum by using the secant slope projection 
method.  The program will iterate for the local minimum either thirty times or 
until the critical depth has been bounded by the critical error tolerance.  After 
the local minimum has been determined more precisely, the program will 
continue searching the table to see if there are any other local minimums.  The 
program can locate up to three local minimums in the energy curve.  If more 
than one local minimum is found, the program sets critical depth equal to the 
one with the minimum energy.  If this local minimum is due to a break in the 
energy curve caused by overtopping a levee or an ineffective flow area, then 
the program will select the next lowest minimum on the energy curve.  If all 
of the local minimums are occurring at breaks in the energy curve (caused by 
levees and ineffective flow areas), then the program will set critical depth to 
the one with the lowest energy.  If no local minimums are found, then the 
program will use the water surface elevation with the least energy.  If the 
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critical depth that is found is at the top of the cross section, then this is 
probably not a real critical depth.  Therefore, the program will double the 
height of the cross section and try again.  Doubling the height of the cross 
section is accomplished by extending vertical walls at the first and last points 
of the section.  The height of the cross section can be doubled five times 
before the program will quit searching. 

 
Applications of the Momentum Equation 

 
Whenever the water surface passes through critical depth, the energy equation 
is not considered to be applicable.  The energy equation is only applicable to 
gradually varied flow situations, and the transition from subcritical to 
supercritical or supercritical to subcritical is a rapidly varying flow situation.  
There are several instances when the transition from subcritical to 
supercritical and supercritical to subcritical flow can occur.  These include 
significant changes in channel slope, bridge constrictions, drop structures and 
weirs, and stream junctions.  In some of these instances empirical equations 
can be used (such as at drop structures and weirs), while at others it is 
necessary to apply the momentum equation in order to obtain an answer. 

 
Within HEC-RAS, the momentum equation can be applied for the following 
specific problems: the occurrence of a hydraulic jump; low flow hydraulics at 
bridges; and stream junctions.  In order to understand how the momentum 
equation is being used to solve each of the three problems, a derivation of the 
momentum equation is shown here.  The application of the momentum 
equation to hydraulic jumps and stream junctions is discussed in detail in 
Chapter 4.  Detailed discussions on applying the momentum equation to 
bridges is discussed in Chapter 5. 

 
The momentum equation is derived from Newton's second law of motion: 

 
Force  =  Mass x Acceleration (change in momentum) 

 
amFx =∑        (2-20) 

 
Applying Newton's second law of motion to a body of water enclosed by two 
cross sections at locations 1 and 2 (Figure 2.7), the following expression for 
the change in momentum over a unit time can be written: 
 

xfx VQFWPP ∆=−+− ρ12      (2-21) 
 
Where: P = Hydrostatic pressure force at locations 1 and 2. 

Wx = Force due to the weight of water in the X direction. 
Ff  = Force due to external friction losses from 2 to 1. 
Q = Discharge. 
ρ = Density of water  
∆Vx = Change in velocity from 2 to 1, in the X direction. 
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   Figure 2.7  Application of the Momentum Principle 
 
 
 

Hydrostatic Pressure Forces: 
 

The force in the X direction due to hydrostatic pressure is: 
 

θγ cosYAP =       (2-22) 
 

The assumption of a hydrostatic pressure distribution is only valid for slopes 
less than 1:10.  The cos θ for a slope of 1:10 (approximately 6 degrees) is 
equal to 0.995.  Because the slope of ordinary channels is far less than 1:10, 
the cos θ correction for depth can be set equal to 1.0 (Chow, 1959).  
Therefore, the equations for the hydrostatic pressure force at sections 1 and 2 
are as follows: 
 

111 YAP γ=        (2-23) 
 

222 YAP γ=        (2-24) 
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Where: γ = Unit weight of water 

Ai = Wetted area of the cross section at locations 1 and 2 
iY  = Depth measured from the water surface to the centroid of 

the cross sectional area at locations 1 and 2 
 
 

Weight of Water Force: 
 

Weight of water  =  (unit weight of water)  x  (volume of water) 
 

LAAW 





 +

=
2

21γ       (2-25) 

 
θsin×= WWx        (2-26) 

 

0
12sin S

L
zz

=
−

=θ       (2-27) 

 

0
21

2
SLAAWx 






 +

= γ      (2-28) 

 
Where: L = Distance between sections 1 and 2 along the X axis 

So = Slope of the channel, based on mean bed elevations 
zi = Mean bed elevation at locations 1 and 2 

 
2-18 



 Chapter 2  Theoretical Basis for One-Dimensional Flow Calculations  
 

Force of External Friction: 
 

LPFf τ=         (2-29) 
 
Where: τ = Shear stress 

P  = Average wetted perimeter between sections 1 and 2 
 

fSRγτ =         (2-30) 
 

Where: R  = Average hydraulic radius  (R = A/P) 
fS  = Slope of the energy grade line (friction slope) 

 

LPS
P
AF ff γ=       (2-31) 

 

LSAAF ff 





 +

=
2

21γ      (2-32) 

 
 

Mass times Acceleration: 
 

xVQam ∆= ρ        (2-33) 
 

( 2211 VVVand
g x ββ )γρ −=∆=       

 

( 2211 VV
g

Qam ββ )γ
−=      (2-34) 

 
 

Where: β = momentum coefficient that accounts for a varying velocity 
distribution in irregular channels 
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Substituting Back into Equation 2-21, and assuming Q can vary from 2 to 1: 
 

22
2

11
121

0
21

1122 22
V

g
QV

g
QSLAASLAAYAYA f β

γ
β

γ
γγγγ −=






 +

−





 +

+−  (2-35) 

 

11
11121

0
21

22
222

22
YA

g
VQSLAASLAAYA

g
VQ

f +=





 +

−





 +

++
ββ

  (2-36) 

 

11
1

1121
0

21
22

2

22

22
YA

Ag
QSLAASLAAYA

Ag
Q

f +=





 +

−





 +

++
ββ

 (2-37) 

 
 

Equation 2-37 is the functional form of the momentum equation that is used 
in HEC-RAS.  All applications of the momentum equation within HEC-RAS 
are derived from equation 2-37. 
 

 
Air Entrainment in High Velocity Streams 
 
For channels that have high flow velocity, the water surface may be slightly 
higher than otherwise expected due to the entrainment of air.  While air 
entrainment is not important for most rivers, it can be significant for highly 
supercritical flows (Froude numbers greater than 1.6).  HEC-RAS now takes 
this into account with the following two equations (EM 1110-2-1601, plate B-
50): 
 
For Froude numbers less than or equal to 8.2, 
 

( ) F
a eDD 061.0906.0=       (2-38) 

 
For Froude numbers greater than 8.2, 
 

( ) F
a eDD 1051.0620.0=      (2-39) 

 
Where: Da = water depth with air entrainment 

D = water depth without air entrainment 
e = numerical constant, equal to 2.718282 
F = Froude number 

 
A water surface with air entrainment is computed and displayed separately in 
the HEC-RAS tabular output.  In order to display the water surface with air 
entrainment, the user must create their own profile table and include the 
variable “WS Air Entr.” within that table.  This variable is not automatically 
displayed in any of the standard HEC-RAS tables. 
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Steady Flow Program Limitations 
 

The following assumptions are implicit in the analytical expressions used in 
the current version of the program: 

 
(1) Flow is steady.    

 
(2) Flow is gradually varied. (Except at hydraulic structures such as: 

bridges; culverts; and weirs.  At these locations, where the flow can 
be rapidly varied, the momentum equation or other empirical 
equations are used.) 

 
(3) Flow is one dimensional (i.e., velocity components in directions other 

than the direction of flow are not accounted for). 
 

(4) River channels have “small” slopes, say less than 1:10. 
 

Flow is assumed to be steady because time-dependent terms are not included 
in the energy equation (Equation 2-1).  Flow is assumed to be gradually 
varied because Equation 2-1 is based on the premise that a hydrostatic 
pressure distribution exists at each cross section.  At locations where the flow 
is rapidly varied, the program switches to the momentum equation or other 
empirical equations.  Flow is assumed to be one-dimensional because 
Equation 2-19 is based on the premise that the total energy head is the same 
for all points in a cross section.  Small channel slopes are assumed because 
the pressure head, which is a component of Y in Equation 2-1, is represented 
by the water depth measured vertically. 

 
The program does not currently have the capability to deal with movable 
boundaries (i.e., sediment transport) and requires that energy losses be 
definable with the terms contained in Equation 2-2. 
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Unsteady Flow Routing 
 

 
The physical laws which govern the flow of water in a stream are:  (1) the 
principle of conservation of mass (continuity), and (2) the principle of 
conservation of momentum.  These laws are expressed mathematically in 
the form of partial differential equations, which will hereafter be referred 
to as the continuity and momentum equations.  The derivations of these 
equations are presented in this chapter based on a paper by James A. 
Liggett from the book “Unsteady Flow in Open Channels” (Mahmmod 
and Yevjevich, 1975). 

 
 
   Continuity Equation 
 

Consider the elementary control volume shown in Figure 2.8.  In this 
figure, distance x is measured along the channel, as shown.  At the 
midpoint of the control volume the flow and total flow area are denoted 
Q(x,t) and AT, respectively.  The total flow area is the sum of active area A 
and off-channel storage area S. 

 

Q (x,t) 
h(x,t) 

Inflow Outflow 

x 

x 
 

 

Figure 2.8  Elementary Control Volume for Derivation of Continuity and Momentum 
Equations. 
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Conservation of mass for a control volume states that the net rate of flow 
into the volume be equal to the rate of change of storage inside the 
volume.  The rate of inflow to the control volume may be written as: 

 
 

     
2
x

x
QQ ∆

∂
∂

−      (2-40) 

 
 
   the rate of outflow as: 
 
 

     
2
x

x
QQ ∆

∂
∂

+      (2-41) 

 
 
 
   and the rate of change in storage as: 
 

     x
t

AT ∆
∂

∂      (2-42) 

 
 

Assuming that ∆x is small, the change in mass in the control volume is 
equal to: 

 
 









+






 ∆

∂
∂

+−





 ∆

∂
∂

−=∆
∂

∂
l

T Qx
x
QQx

x
QQx

t
A

22
ρρ    (2-43) 

 
 

where Ql is the lateral flow entering the control volume and ρ is the fluid 
density.  Simplifying and dividing through by ρ∆x yields the final form of 
the continuity equation: 

 
 

    0=−
∂
∂

+
∂

∂
l

T q
x
Q

t
A            (2-44) 

 
 
 
   in which ql is the lateral inflow per unit length. 
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   Momentum Equation 
 

Conservation of momentum is expressed by Newton's second law as: 
 
 

     
dt
MdFx

r

=∑             (2-45) 

 
 

Conservation of momentum for a control volume states that the net rate of 
momentum entering the volume (momentum flux) plus the sum of all 
external forces acting on the volume be equal to the rate of accumulation 
of momentum.  This is a vector equation applied in the x-direction.  The 
momentum flux (MV) is the fluid mass times the velocity vector in the 
direction of flow.  Three forces will be considered:  (1) pressure, (2) 
gravity and (3) boundary drag, or friction force. 

 
Pressure forces:  Figure 2.9 illustrates the general case of an irregular 
cross section.  The pressure distribution is assumed to be hydrostatic 
(pressure varies linearly with depth) and the total pressure force is the 
integral of the pressure-area product over the cross section.  After Shames 
(1962), the pressure force at any point may be written as: 

 
 

                                                       (2-46) ∫ −=
h

P dyyTyhgF
0

)()(ρ

 
 

where h is the depth, y the distance above the channel invert, and T(y) a 
width function which relates the cross section width to the distance above 
the channel invert. 

 
If Fp is the pressure force in the x-direction at the midpoint of the control 
volume, the force at the upstream end of the control volume may be 
written as: 

 
 

     
2
x

x
FF P

P
∆

∂
∂

−      (2-47) 

 
   and at the downstream end as: 
 

     
2
x

x
FF P

P
∆

∂
∂

+      (2-48) 
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h -y 

y 

T(y) 

dy h 

Figure 2.9 Illustration of Terms Associated with Definition of 
Pressure Force.  

 
 

The sum of the pressure forces for the control volume may therefore be 
written as: 

 
 

   B
P

P
P

PPn Fx
x

FFx
x

FFF +
∆

∂
∂

+−
∆

∂
∂

−=
22

    (2-49) 

 
 

where FPn  is the net pressure force for the control volume, and FB is the 
force exerted by the banks in the x-direction on the fluid.  This may be 
simplified to: 

 

     B
P

Pn Fx
x

FF +∆
∂

∂
−=      (2-50) 

 
 

Differentiating equation 2-46 using Leibnitz's Rule and then substituting 
in equation 2-50 results in: 
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  B

h h

Pn Fdy
x
yTyhdyyT

x
hxgF +









∂
∂

−+
∂
∂

∆−= ∫ ∫
0 0

)()()(ρ   (2-51) 

 
 

The first integral in equation 2-51 is the cross-sectional area, A.  The 
second integral (multiplied by -ρg∆x) is the pressure force exerted by the 
fluid on the banks, which is exactly equal in magnitude, but opposite in 
direction to FB.  Hence the net pressure force may be written as: 

 
 

    x
x
hAgFPn ∆

∂
∂

−= ρ       (2-52) 

 
 

Gravitational force: The force due to gravity on the fluid in the control 
volume in the x-direction is: 

 
     xgAFg ∆= θρ sin      (2-53) 

 
 

here θ is the angle that the channel invert makes with the horizontal.  For 
natural rivers θ is small and sin θ ≈  tan θ = - ∂ ∂Z0 / X , where z0 is the 
invert elevation.  Therefore the gravitational force may be written as: 

 

     F gA
z
x

xg = −ρ
∂
∂

0 ∆      (2-54) 

 
 

This force will be positive for negative bed slopes. 
 

Boundary drag (friction force): Frictional forces between the channel and 
the fluid may be written as: 

 
 
      xPFf ∆−= 0τ      (2-55) 

 
 

where τo is the average boundary shear stress (force/unit area) acting on 
the fluid boundaries, and P is the wetted perimeter.  The negative sign 
indicates that, with flow in the positive x-direction, the force acts in the 
negative x-direction.  From dimensional analysis, τo may be expressed in 
terms of a drag coefficient, CD, as follows: 

 
           (2-56) 2

0 DC Vτ ρ=
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The drag coefficient may be related to the Chezy coefficient, C, by the 
following: 

 
 

      2C
gCD =      (2-57) 

 
 

Further, the Chezy equation may be written as: 
 
      fV C      (2-58) RS=

 
 

Substituting equations 2-56, 2-57, and 2-58 into 2-55, and simplifying, 
yields the following expression for the boundary drag force: 

 
 
      xSAgF ff ∆−= ρ     (2-59) 
 

where Sf is the friction slope, which is positive for flow in the positive x-
direction.  The friction slope must be related to flow and stage.  
Traditionally, the Manning and Chezy friction equations have been used.  
Since the Manning equation is predominantly used in the United States, it 
is also used in HEC-RAS.  The Manning equation is written as: 

 

      23/4

2

208.2 AR
nQQ

f =S     (2-60) 

 
where R is the hydraulic radius and n is the Manning friction coefficient. 

 
Momentum flux: With the three force terms defined, only the momentum 
flux remains.  The flux entering the control volume may be written as: 

 

      ρ
∂
∂

QV
QV
x

x
−
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    (2-61) 

 
and the flux leaving the volume may be written as: 

 

      ρ
∂
∂

QV
QV
x

x
+







∆
2

    (2-62) 

Therefore the net rate of momentum (momentum flux) entering the control 
volume is: 
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       − ρ
∂
∂
QV
x

x∆     (2-63) 

 
 

Since the momentum of the fluid in the control volume is ρQ∆x, the rate 
of accumulation of momentum may be written as: 

 

     ( )∂
∂

ρ ρ∆
∂
∂t

Q x x
Q
t

∆ =      (2-64) 

 
Restating the principle of conservation of momentum: 

 
The net rate of momentum (momentum flux) entering the volume (2-63) 
plus the sum of all external forces acting on the volume [(2-52) + (2-54) + 
(2-59)] is equal to the rate of accumulation of momentum (2-64).  Hence: 
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The elevation of the water surface, z, is equal to z0 + h.  Therefore: 
 
 

      
∂
∂

∂
∂

∂
∂

z
x

h
x

z
x

= + 0     (2-66) 

 
 

where  is the water surface slope.  Substituting (2-66) into (2-65), 
dividing through by ρ∆x and moving all terms to the left yields the final 
form of the momentum equation: 

∂ ∂z x/
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Application of the Unsteady Flow Equations Within 
HEC-RAS 

 
 

Figure 2-10 illustrates the two-dimensional characteristics of the 
interaction between the channel and floodplain flows.  When the river is 
rising water moves laterally away from the channel, inundating the 
floodplain and filling available storage areas.  As the depth increases, the 
floodplain begins to convey water downstream generally along a shorter 
path than that of the main channel.  When the river stage is falling, water 
moves toward the channel from the overbank supplementing the flow in 
the main channel. 

 

Figure 2.10  Channel and floodplain flows 

 
Because the primary direction of flow is oriented along the channel, this 
two-dimensional flow field can often be accurately approximated by a 
one-dimensional representation.  Off-channel ponding areas can be 
modeled with storage areas that exchange water with the channel.  Flow in 
the overbank can be approximated as flow through a separate channel. 

 
This channel/floodplain problem has been addressed in many different 
ways.  A common approach is to ignore overbank conveyance entirely, 
assuming that the overbank is used only for storage.  This assumption may 
be suitable for large streams such as the Mississippi River where the 
channel is confined by levees and the remaining floodplain is either 
heavily vegetated or an off-channel storage area.  Fread (1976) and Smith 
(1978) approached this problem by dividing the system into two separate 
channels and writing continuity and momentum equations for each 
channel.  To simplify the problem they assumed a horizontal water surface 
at each cross section normal to the direction of flow; such that the 
exchange of momentum between the channel and the floodplain was 
negligible and that the discharge was distributed according to conveyance, 
i.e.: 
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                                                                     QQc φ=                                                    (2-68) 

Where: Qc = flow in channel, 
     Q = total flow, 
     φ = Kc / (Kc + Kf), 
     Kc = conveyance in the channel, and, 
     Kf = conveyance in the floodplain. 
 

With these assumptions, the one-dimensional equations of motion can be 
combined into a single set: 
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in which the subscripts c and f refer to the channel and floodplain, 
respectively.  These equations were approximated using implicit finite 
differences, and solved numerically using the Newton-Raphson iteration 
technique.  The model was successful and produced the desired effects in 
test problems.  Numerical oscillations, however, can occur when the flow 
at one node, bounding a finite difference cell, is within banks and the flow 
at the other node is not. 

 
Expanding on the earlier work of Fread and Smith, Barkau (1982) 
manipulated the finite difference equations for the channel and floodplain 
and defined a new set of equations that were computationally more 
convenient.  Using a velocity distribution factor, he combined the 
convective terms.  Further, by defining an equivalent flow path, Barkau 
replaced the friction slope terms with an equivalent force. 

 
The equations derived by Barkau are the basis for the unsteady flow 
solution within the HEC-RAS software.  These equations were derived 
above.  The numerical solution of these equations is described in the next 
sections. 
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   Implicit Finite Difference Scheme 
 

The most successful and accepted procedure for solving the one-
dimensional unsteady flow equations is the four-point implicit scheme, 
also known as the box scheme (Figure 2.11).  Under this scheme, space 
derivatives and function values are evaluated at an interior point, (n+θ) ∆t. 
Thus values at (n+1) ∆t enter into all terms in the equations.  For a reach 
of river, a system of simultaneous equations results.  The simultaneous 
solution is an important aspect of this scheme because it allows 
information from the entire reach to influence the solution at any one 
point.  Consequently, the time step can be significantly larger than with 
explicit numerical schemes.  Von Neumann stability analyses performed 
by Fread (1974), and Liggett and Cunge (1975), show the implicit scheme 
to be unconditionally stable (theoretically) for 0.5 < θ ≤ 1.0, conditionally 
stable for θ = 0.5, and unstable for θ < 0.5.  In a convergence analysis 
performed by the same authors, it was shown that numerical damping 
increased as the ratio λ/∆x decreased, where λ is the length of a wave in 
the hydraulic system.  For streamflow routing problems where the 
wavelengths are long with respect to spatial distances, convergence is not 
a serious problem.   
 
In practice, other factors may also contribute to the non-stability of the 
solution scheme.  These factors include dramatic changes in channel 
cross-sectional properties, abrupt changes in channel slope, characteristics 
of the flood wave itself, and complex hydraulic structures such as levees, 
bridges, culverts, weirs, and spillways.   In fact, these other factors often 
overwhelm any stability considerations associated with θ.  Because of 
these factors, any model application should be accompanied by a 
sensitivity study, where the accuracy and the stability of the solution 
are tested with various time and distance intervals. 
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  Figure 2.11  Typical finite difference cell. 

 
   The following notation is defined: 

  (2-71) f = f j
n

j

   and: 

  (2-72) f - f = f j
n

j
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   then: 

  (2-73) f + f = f jjj
1+n ∆

   The general implicit finite difference forms are: 
 
   1. Time derivative 
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   2. Space derivative 
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   3. Function value 

 )f + f(  0.5 + )f + f( 0.5 = f  f 1+jj1+jj ∆∆≈ θ  (2-76) 

 
 
   Continuity Equation 
 

The continuity equation describes conservation of mass for the one-
dimensional system.  From previous text, with the addition of a storage 
term, S, the continuity equation can be written as: 
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where:  x = distance along the channel, 
      t = time, 
      Q = flow, 
      A = cross-sectional area, 
      S = storage from non conveying portions of 

cross section, 
      ql  = lateral inflow per unit distance. 
 

The above equation can be written for the channel and the floodplain: 
 

 q = 
t
A + 

x
Q

f
c

c

c

∂
∂

∂
∂

 (2-78) 

   and: 
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where the subscripts c and f refer to the channel and floodplain, 
respectively, ql is the lateral inflow per unit length of floodplain, and qc 
and qf are the exchanges of water between the channel and the floodplain. 

 
Equations 2-78 and 2-79 are now approximated using implicit finite 
differences by applying Equations 2-74  through 2-76: 
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The exchange of mass is equal but not opposite in sign such that ∆xcqc = -
qf∆xf.  Adding the above equations together and rearranging yields: 
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   where Q l is the average lateral inflow. 
 
 
   Momentum Equation 
 

The momentum equation states that the rate of change in momentum is 
equal to the external forces acting on the system.  From Appendix A, for a 
single channel: 
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where: g = acceleration of gravity, 
     Sf = friction slope, 
     V = velocity. 
 
   The above equation can be written for the channel and for the floodplain: 
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where Mc and Mf are the momentum fluxes per unit distance exchanged 
between the channel and floodplain, respectively.  Note that in Equations 
2-84 and 2-85 the water surface elevation is not subscripted.  An 
assumption in these equations is that the water surface is horizontal at any 
cross section perpendicular to the flow.  Therefore, the water surface 
elevation is the same for the channel and the floodplain at a given cross 
section. 

 
Using Equations 2-74 through 2-76, the above equations are approximated 
using finite differences: 
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   Note that ∆xcMc = -∆xfMf. 
 
   Adding and rearranging the above equations yields: 

0=xSAg+xSAg+z)A+Ag(+)QV(+)QV(+
t

)xQ+xQ(
ffffcfccfcffcc

ffcc ∆∆∆∆∆
∆

∆∆∆
     (2-88) 

The final two terms define the friction force from the banks acting on the 
fluid.  An equivalent force can be defined as: 

 

 xSAg + xSAg = x S Ag ffffcfccef ∆∆∆  (2-89) 

where: ∆xe = equivalent flow path, 
     Sf = friction slope for the entire cross section, 
     A =  A c + A f. 
 

Now, the convective terms can be rewritten by defining a velocity 
distribution factor: 

 

 
QV

)QV + QV(
 = 

AV
)AV + AV(

 = ffcc

2
ff

2
cc

2

β  (2-90) 

   then: 
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 )QV( + )QV( = VQ)( ffcc ∆∆∆ β  (2-91) 

   The final form of the momentum equation is: 
 

 0 = xSAg +z Ag + VQ)( + 
t

)xQ + xQ(
ef

ffcc ∆∆∆
∆

∆∆∆
β               (2-92) 

   A more familiar form is obtained by dividing through by ∆xe: 
 

 0 = )S + 
x
z(Ag + 

x
VQ)( + 

xt
)xQ + xQ(

f
eee

ffcc

∆
∆

∆
∆

∆∆

∆∆∆ β      (2-93) 

 
   Added Force Term 
 

The friction and pressure forces from the banks do not always describe all 
the forces that act on the water.  Structures such as bridge piers, 
navigation dams, and cofferdams constrict the flow and exert additional 
forces, which oppose the flow.  In localized areas these forces can 
predominate and produce a significant increase in water surface elevation 
(called a "swell head") upstream of the structure. 

 
For a differential distance, dx, the additional forces in the contraction 
produce a swell head of dhl.  This swell head is only related to the 
additional forces.  The rate of energy loss can be expressed as a local 
slope: 

 
dx
dh = S l

h  (2-94) 

The friction slope in Equation 2-93 can be augmented by this term: 

 0 = )S + S + 
x
zgA( + 

x
(VQ) + 

t
Q

hf∂
∂

∂
∂

∂
∂  (2-95) 

For steady flow, there are a number of relationships for computation of the 
swell head upstream of a contraction.  For navigation dams, the formulas 
of Kindsvater and Carter, d'Aubuisson (Chow, 1959), and Nagler were 
reviewed by Denzel (1961).  For bridges, the formulas of Yarnell (WES, 
1973) and the Federal Highway Administration (FHWA, 1978) can be 
used.  These formulas were all determined by experimentation and can be 
expressed in the more general form: 

 
2g
V C= h

2

l  (2-96) 
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where hl is the head loss and C is a coefficient.  The coefficient C is a 
function of velocity, depth, and the geometric properties of the opening, 
but for simplicity, it is assumed to be a constant.  The location where the 
velocity head is evaluated varies from method to method.  Generally, the 
velocity head is evaluated at the tailwater for tranquil flow and at the 
headwater for supercritical flow in the contraction. 

 
If hl occurs over a distance ∆xe, then hl = S h ∆xe and S h = hl / ∆xe where 
S h is the average slope over the interval ∆xe.  Within HEC-RAS, the 
steady flow bridge and culvert routines are used to compute a family of 
rating curves for the structure.  During the simulation, for a given flow and 
tailwater, a resulting headwater elevation is interpolated from the curves.  
The difference between the headwater and tailwater is set to hl and then 
S h is computed.  The result is inserted in the finite difference form of the 
momentum equation (Equation 2-93), yielding: 

 

                   0 = S + S + 
x
zAg + 

x
VQ)( + 

xt
)xQ + xQ(

hf
eee

ffcc








∆
∆

∆
∆

∆∆

∆∆∆ β                          (2-97) 

 
   Lateral Influx of Momentum 
 

At stream junctions, the momentum as well as the mass of the flow from a 
tributary enters the receiving stream.  If this added momentum is not 
included in the momentum equation, the entering flow has no momentum 
and must be accelerated by the flow in the river.  The lack of entering 
momentum causes the convective acceleration term, ∂ (VQ) /∂ x, to 
become large.  To balance the spatial change in momentum, the water 
surface slope must be large enough to provide the force to accelerate the 
fluid.  Thus, the water surface has a drop across the reach where the flow 
enters creating backwater upstream of the junction on the main stem.  
When the tributary flow is large in relation to that of the receiving stream, 
the momentum exchange may be significant.  The confluence of the 
Mississippi and Missouri Rivers is such a juncture.  During a large flood, 
the computed decrease in water surface elevation over the Mississippi 
reach is over 0.5 feet if the influx of momentum is not properly 
considered. 

 
   The entering momentum is given by: 
 

 
x
VQ

 = M ll
l ∆

ξ      (2-98) 
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   where:  Ql = lateral inflow, 
      Vl = average velocity of lateral inflow, 

           ξ   = fraction of the momentum entering the 
receiving stream. 

 
  
 

The entering momentum is added to the right side of Equation 2-97, 
hence: 

 

 
x
VQ

 = S + S + 
x
zAg + 

x
VQ)( + 

xt
)xQ + xQ(

e

ll
hf

eee

ffcc
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∆
∆

∆
∆

∆∆

∆∆∆
ξβ        (2-99) 

 
Equation 2-99 is only used at stream junctions in a dendritic model. 
 
 
 
Finite Difference Form of the Unsteady Flow 
Equations 
 
Equations 2-77 and 2-83 are nonlinear.  If the implicit finite difference 
scheme is directly applied, a system of nonlinear algebraic equations 
results.  Amain and Fang (1970), Fread (1974, 1976) and others have 
solved the nonlinear equations using the Newton-Raphson iteration 
technique.  Apart from being relatively slow, that iterative scheme can 
experience troublesome convergence problems at discontinuities in the 
river geometry.  To avoid the nonlinear solution, Preissmann (as reported 
by Liggett and Cunge, 1975) and Chen (1973) developed a technique for 
linearizing the equations.  The following section describes how the finite 
difference equations are linearized in HEC-RAS. 

 
   Linearized, Implicit, Finite Difference Equations 
 
   The following assumptions are applied: 
 

1. If  f • f >> ∆f •∆f, then ∆f •∆f = 0 (Preissmann as reported by 
Liggett and Cunge, 1975). 

 
 2. If g = g(Q,z), then ∆g can be approximated by the first term of the 

Taylor Series, i.e.: 

 zz
g + Q

Q
g = g j

j
j

j
j ∆








∂
∂

∆







∂
∂

∆  (2-100) 
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   3.  If the time step, ∆t, is small, then certain variables can be treated 

explicitly; hence hj
n+1 ≈ hj

n  and ∆hj ≈ 0. 
 

Assumption 2 is applied to the friction slope, Sf and the area, A.  
Assumption 3 is applied to the velocity, V, in the convective term; the 
velocity distribution factor, β; the equivalent flow path, x; and the flow 
distribution factor, φ. 

 
The finite difference approximations are listed term by term for the 
continuity equation in Table 2-1 and for the momentum equation in Table 
2-2.  If the unknown values are grouped on the left-hand side, the 
following linear equations result: 

 

CB = z2CZ + Q2CQ + z1CZ + Q1CQ j1+jj1+jjjjjj ∆∆∆∆                    (2-101) 

 

 MB = z2 MZ+ Q2 MQ+ z1 MZ+ Q1MQ j1+jj1+jjjjjj ∆∆∆∆                (1-102)   

 
 Table 2-1 
 Finite Difference Approximation of the Terms in the Continuity Equation 
 

Term  Finite Difference Approximation 
∆Q  
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 Table 2-2 
 Finite Difference Approximation of the Terms in the Momentum Equation 
 

Term 

Finite Difference Approximation 
∂

∂
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The values of the coefficients are defined in Tables 2-3 and 2-4. 

 
 
 Table 2-3 
 Coefficients for the Continuity Equation 
 

Coefficient 
Value 

CQ1j  
 -

xej

θ
∆  

CZ1j  
 

0.5
t x

dA
dz x  +  

dA
dz

 +  
dS
dz x

ej j

c
cj

j

f
fj∆ ∆

∆ ∆






















  

CQ2j  
 θ

∆ ejx  

   

CZ2j  
 

0.5
t x

dA
dz x  +  

dA
dz

 +  
dS
dz x

ej j+1

c
cj

j+1

f
fj∆ ∆

∆ ∆






















  

   

jCB  
 

-
Q  -  Q

x
 +  

Q
x

j+1 j

ej

1

ej∆ ∆  

 
 

 
 2-41



Chapter 2  Theoretical Basis for One-Dimensional Flow Calculations   
 

 Table 2-4 

Coefficients of the Momentum Equation 
 

Term  Value 
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   Flow Distribution Factor 
 

The distribution of flow between the channel and floodplain must be 
determined.  The portion of the flow in the channel is given by: 

 

 
Q + Q

Q
 = 

fjcj

cj
jφ  (2-103) 

 
Fread (1976) assumed that the friction slope is the same for the channel 
and floodplain, thus the distribution is given by the ratio of conveyance: 

 

 
K + K

K = 
fjcj

cj
jφ  (2-104) 

 
Equation 2-104 is used in the HEC-RAS model. 

 
 
   Equivalent Flow Path 
 
   The equivalent flow path is given by: 
 

 
SA

xSA + xSA = x
f

ffffcfcc
e

∆∆
∆  (2-105) 

   If we assume: 

 
K + K

K = 
fc

cφ  (2-106) 

 
   where φ  is the average flow distribution for the reach, then: 
 
 

 
A

xA + xA = x
ffcc

e

∆∆
∆  (2-107) 

 
 
   Since ∆xe is defined explicitly: 
 
 
 

 
A + A

x)A + A( + x)A + A(
 = x
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fj1fj+fjcj1cj+cj
ej

∆∆
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   Boundary Conditions 
 

For a reach of river there are N computational nodes which bound N-1 
finite difference cells.  From these cells 2N-2 finite difference equations 
can be developed.  Because there are 2N unknowns (∆Q and ∆z for each 
node), two additional equations are needed.  These equations are provided 
by the boundary conditions for each reach, which for subcritical flow, are 
required at the upstream and downstream ends.  For supercritical flow, 
boundary conditions are only required at the upstream end. 

 
 

Interior Boundary Conditions (for Reach Connections) 
 

A network is composed of a set of M individual reaches.  Interior boundary 
equations are required to specify connections between reaches.  Depending on 
the type of reach junction, one of two equations is used: 

 
   Continuity of flow: 
 

  (2-109) 0 = QS igi

l

1=i
∑

 
where: l =  the number of reaches connected at a junction, 

Sgi =  -1 if i is a connection to an upstream reach,  +1 if i is a 
connection to a downstream reach, 

         Qi   =  discharge in reach i. 
  
   The finite difference form of Equation 2-109 is: 
 
 

  (2-110) MUB = QMUQ + QUM mKmimi

1-l

1=i

∆∆∑
 
 

where: MUmi     =   θ Sgi, 
    MUQm    =   θ SgK, 

    MUB  =  -  S Qm
i=1

l

gi i∑
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    Continuity of stage: 
 

 
  (2-111) kz  =  zc

where zk, the stage at the boundary of reach k, is set equal to zc, a stage 
common to all stage boundary conditions at the junction of interest.  The 
finite difference form of Equation 2-111 is: 

 
 
 MUB = zU M- zMUZ mcmKm ∆∆  (2-112) 
 
   where: MUZm  =  0, 
    MUm  =  0, 
    MUBm  =  zc - zK. 
 

With reference to Figure 2.12, HEC-RAS uses the following strategy to 
apply the reach connection boundary condition equations: 

 
 • Apply flow continuity to reaches upstream of flow splits and 

downstream of flow combinations (reach 1 in Figure 2.12).  Only 
one flow boundary equation is used per junction. 

 
 • Apply stage continuity for all other reaches (reaches 2 and 3 in 

Figure 2.12).  Zc is computed as the stage corresponding to the 
flow in reach 1.  Therefore, stage in reaches 2 and 3 will be set 
equal to Zc. 

 
   Upstream Boundary Conditions 
 

Upstream boundary conditions are required at the upstream end of all reaches 
that are not connected to other reaches or storage areas.  An upstream 
boundary condition is applied as a flow hydrograph of discharge versus time. 
 The equation of a flow hydrograph for reach m is: 

 

 
  (2-113) ∆ n+1

k
n

k kQ  =  Q  -  Q

where k is the upstream node of reach m.  The finite difference form of 
Equation 2-113 is: 

 
 MUB = dQMUQ mKm ∆  (2-114) 
 
   where: MUQm  =  1, 
                   MUBm   =  Ql

n+1 - Ql
n. 
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   Figure 2.12  Typical flow split and combination. 
 
 

Downstream Boundary Conditions 
 

Downstream boundary conditions are required at the downstream end of 
all reaches which are not connected to other reaches or storage areas.  
Four types of downstream boundary conditions can be specified: 

 
    • a stage hydrograph, 
   • a flow hydrograph, 
   • a single-valued rating curve, 

 • normal depth from Manning's equation. 
 

Stage Hydrograph.  A stage hydrograph of water surface elevation versus 
time may be used as the downstream boundary condition if the stream 
flows into a backwater environment such as an estuary or bay where the 
water surface elevation is governed by tidal fluctuations, or where it flows 
into a lake or reservoir of known stage(s).  At time step (n+1)∆t, the 
boundary condition from the stage hydrograph is given by: 

 
  (2-115) n

N
n
NN ZZZ −=∆ +1
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   The finite difference form of Equation 2-115 is: 
 
 
 CDB = zCDZ mNm ∆  (2-116) 
 
   where: CDZm =  1, 
    CDBm  =  zN

n+1 - zN
n. 

 
Flow Hydrograph.  A flow hydrograph may be used as the downstream 
boundary condition if recorded gage data is available and the model is 
being calibrated to a specific flood event.  At time step (n+1)∆t, the 
boundary condition from the flow hydrograph is given by the finite 
difference equation: 

 
 

 
 CDB = QCDQ mNm ∆  (2-117) 

   where: CDQm =  1, 
                    CDBm  =  QN

n+1 - QN
n. 

 
Single Valued Rating Curve.  The single valued rating curve is a 
monotonic function of stage and flow.  An example of this type of curve is 
the steady, uniform flow rating curve.  The single valued rating curve can 
be used to accurately describe the stage-flow relationship of free outfalls 
such as waterfalls, or hydraulic control structures such as spillways, weirs 
or lock and dam operations.  When applying this type of boundary 
condition to a natural stream, caution should be used.  If the stream 
location would normally have a looped rating curve, then placing a single 
valued rating curve as the boundary condition can introduce errors in the 
solution.  Too reduce errors in stage, move the boundary condition 
downstream from your study area, such that it no longer affects the stages 
in the study area.  Further advice is given in (USACE, 1993). 

 
   At time (n+1)∆t the boundary condition is given by: 
 

 )S - z + z(
S - S
D - D + D = Q + Q 1-kNN

1-kk

1-kk
1-kNN ∆∆θ  (2-118) 

 
   where: Dk =  Kth discharge ordinate, 
                 Sk  =  Kth stage ordinate. 
 

After collecting unknown terms on the left side of the equation, the finite 
difference form of Equation 2-118 is: 
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 CDB = zCDZ + QCDQ mNmNm ∆∆  (2-119) 
 
   where: ,θ=mCDQ  

    ,
S - S
D - D = CDZ

1-kk

1-kk
m   

    ).S - z(
S - S
D - D + D + Q = CDB 1-kN

1-kk

1-kk
1-kNm  

 
Normal Depth.  Use of Manning's equation with a user entered friction 
slope produces a stage considered to be normal depth if uniform flow 
conditions existed.  Because uniform flow conditions do not normally 
exist in natural streams, this boundary condition should be used far 
enough downstream from your study area that it does not affect the results 
in the study area.  Manning's equation may be written as: 

 

 
  (2-120) )SK( = Q 0.5

f

   where: K represents the conveyance and Sf is the friction slope. 
 
 
   Skyline Solution of a Sparse System of Linear Equations 
 

The finite difference equations along with external and internal boundary 
conditions and storage area equations result in a system of linear equations 
which must be solved for each time step: 

 
      Ax = b     (2-121) 

 
   in which: A = coefficient matrix, 
     x = column vector of unknowns, 
     b = column vector of constants. 
 

For a single channel without a storage area, the coefficient matrix has a 
band width of five and can be solved by one of many banded matrix 
solvers. 

 
For network problems, sparse terms destroy the banded structure.  The 
sparse terms enter and leave at the boundary equations and at the storage 
areas.  Figure 2.13 shows a simple system with four reaches and a storage 
area off of reach 2.  The corresponding coefficient matrix is shown in 
Figure 2.14.  The elements are banded for the reaches but sparse elements 
appear at the reach boundaries and at the storage area.  This small system 
is a trivial problem to solve, but systems with hundreds of cross sections 
and tens of reaches pose a major numerical problem because of the sparse 
terms.  Even the largest computers cannot store the coefficient matrix for a 
moderately sized problem, furthermore, the computer time required to 



 Chapter 2  Theoretical Basis for One-Dimensional Flow Calculations  
 

solve such a large matrix using Gaussian elimination would be very large. 
Because most of the elements are zero, a majority of computer time would 
be wasted. 

 
 

 
Figure 2.13  Simple network with four reaches and a storage area. 
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Figure 2.14   Sparse coefficient matrix resulting from simple linear system.  Note, sparse terms 
enter and disappear at storage areas and boundary equations. 

 
Three practical solution schemes have been used to solve the sparse 
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system of linear equations:  Barkau (1985) used a front solver scheme to 
eliminate terms to the left of the diagonal and pointers to identify sparse 
columns to the right of the diagonal.  Cunge et al. (1980) and Shaffranekk 
(1981) used recursive schemes to significantly reduce the size of the 
sparse coefficient matrix.  Tucci (1978) and Chen and Simons (1979) used 
the skyline storage scheme (Bathe and Wilson, 1976) to store the 
coefficient matrix.  The goal of these schemes is to more effectively store 
the coefficient matrix.  The front solver and skyline methods identify and 
store only the significant elements.  The recursive schemes are more 
elegant, significantly reducing the number of linear equations.  All use 
Gaussian elimination to solve the simultaneous equations. 

 
A front solver performs the reduction pass of Gauss elimination before 
equations are entered into a coefficient matrix.  Hence, the coefficient 
matrix is upper triangular.  To further reduce storage, Barkau (1985) 
proposed indexing sparse columns to the right of the band, thus, only the 
band and the sparse terms were stored.  Since row and column operations 
were minimized, the procedure should be as fast if not faster than any of 
the other procedures.  But, the procedure could not be readily adapted to a 
wide variety of problems because of the way that the sparse terms were 
indexed.  Hence, the program needed to be re-dimensioned and 
recompiled for each new problem. 

 
The recursive schemes are ingenious.  Cunge credits the initial application 
to Friazinov (1970).  Cunge's scheme and Schaffranek's scheme are 
similar in approach but differ greatly in efficiency.  Through recursive 
upward and downward passes, each single routing reach is transformed 
into two transfer equations which relate the stages and flows at the 
upstream and downstream boundaries.  Cunge substitutes the transfer 
equations in which M is the number of junctions.  Schraffranek combines 
the transfer equations with the boundary equations, resulting in a system 
of 4N equations in which N is the number of individual reaches.  The 
coefficient matrix is sparse, but the degree is much less than the original 
system. 

 
By using recursion, the algorithms minimize row and column operations.  
The key to the algorithm's speed is the solution of a reduced linear 
equation set.  For smaller problems Gaussian elimination on the full 
matrix would suffice.  For larger problems, some type of sparse matrix 
solver must be used, primarily to reduce the number of elementary 
operations.  Consider, for example, a system of 50 reaches.  Schaffranek's 
matrix would be 200 X 200 and Cunge's matrix would be 50 X 50, 2.7 
million and 42,000 operations respectively (the number of operations is 
approximately 1/3 n3 where n is the number of rows). 

 
Another disadvantage of the recursive scheme is adaptability.  Lateral 
weirs which discharge into storage areas or which discharge into other 
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reaches disrupt the recursion algorithm.  These weirs may span a short 
distance or they may span an entire reach.  The recursion algorithm, as 
presented in the above references, will not work for this problem.  The 
algorithm can be adapted, but no documentation has yet been published. 

 
Skyline is the name of a storage algorithm for a sparse matrix.  In any 
sparse matrix, the non-zero elements from the linear system and from the 
Gaussian elimination procedure are to the left of the diagonal and in a 
column above the diagonal.  This structure is shown in Figure A.4.  
Skyline stores these inverted "L shaped" structures in a vector, keeping the 
total storage at a minimum.  Elements in skyline storage are accessed by 
row and column numbers.  Elements outside the "L" are returned as zero, 
hence the skyline matrix functions exactly as the original matrix.  Skyline 
storage can be adapted to any problem. 

 
The efficiency of Gaussian elimination depends on the number of pointers 
into skyline storage.  Tucci (1978) and Chen and Simons (1979) used the 
original algorithm as proposed by Bathe and Wilson (1976).  This 
algorithm used only two pointers, the left limit and the upper limit of the 
"L", thus, a large number of unnecessary elementary operations are 
performed on zero elements and in searching for rows to reduce.  Their 
solution was acceptable for small problems, but clearly deficient for large 
problems.  Using additional pointers reduces the number of superfluous 
calculations.  If the pointers identify all the sparse columns to the right of 
the diagonal, then the number of operations is minimized and the 
performance is similar to the front solver algorithm. 

 
   Skyline Solution Algorithm 
 

The skyline storage algorithm was chosen to store the coefficient matrix.  
The Gauss elimination algorithm of Bathe and Wilson was abandoned 
because of its poor efficiency.  Instead a modified algorithm with seven 
pointers was developed.  The pointers are: 

 
 1)  IDIA(IROW) - index of the diagonal element in row IROW in 

skyline storage. 
 2) ILEFT(IROW) - number of columns to the left of the diagonal. 
 3) IHIGH(IROW) - number of rows above the diagonal. 
 4) IRIGHT(IROW) - number of columns in the principal band to the 

right of the diagonal. 
 5) ISPCOL(J,IROW) - pointer to sparse columns to the right of the 

principal band. 
 6) IZSA(IS) - the row number of storage area IS. 
 7) IROWZ(N) - the row number of the continuity equation for 

segment N. 
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The pointers eliminate the meaningless operations on zero elements.  This 
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code is specifically designed for flood routing through a full network. 
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