Proof of Eq. 15-1 in "Open-channel hydraulics," by Ven. T. Chow

E2/E1 = [(8F12 + 1)3/2 - 4 F12 + 1]/[8F12(2 + F12)]


F1 = v1/(gy1)1/2

F2 = v2/(gy2)1/2

From continuity:

v1y1 = v2y2

v12y12 = v22y22

F12y13 = F22y23

F22 = F12/ (y2/y1)3

Eq. 3-21 (Chow):

y2/y1 = (1/2)[(1 + 8F12)1/2 - 1]

N2 = 1 + 8F12

y2/y1 = (1/2) [N - 1]

2 (y2/y1) = N - 1

(y2/y1)3 = (1/8) [N - 1]3

2 (y2/y1)3 = (1/4) [N - 1]3

N = (1 + 8F12)1/2

N3 = (1 + 8F12)3/2

N2 - 1 = 8F12

F12 = (N2 - 1)/8

4F12 = (N2 - 1)/2

E2/E1 = [y2 + v22/(2g)]/[y1 + v12/(2g)]

E2/E1 = [y2 (1 + F22/2) ]/[y1 (1 + F12/2)]

E2/E1 = 2 (y2/y1) {1 + F12/[2 (y2/y1)3]}/(2 + F12)

E2/E1 = (N - 1){1 + (N2 - 1)/[2 (N - 1)3]}/(2 + F12)

E2/E1 = (N2 - 1)(N - 1) {1 + (N2 - 1) / [2 (N - 1)3]}/[8 F12 (2 + F12) ]

E2/E1 = [(N2 - 1)(N - 1) + (1/2)(N + 1)2]/[8 F12 (2 + F12)]

E2/E1 = {(N3 - N2 - N - 1) + [(N2/2) + N + (1/2)]}/[8 F12 (2 + F12)]

E2/E1 = {(N3 - [(N2 - 1)/2] + 1}/[8 F12 (2 + F12)]

E2/E1 = [(8F12 + 1)3/2 - 4 F12 + 1]/[8F12(2 + F12)]


Chow, V. T. 1959. "Open-channel hydraulics," McGraw-Hill, New York.

A hydraulic jump downstream of Tinajones reservoir, Chiclayo, Peru.